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초 록

인간은 시간이 지남에 따라 새로운 지식과 기술을 학습, 병합하며 더 다양하고 큰 문제를 해결할 수 있는

능력을 갖는다. 이러한 사람의 학습 능력을 닮은 시스템을 구축하는 것은 긴 시간동안 지속가능한 학습

능력이 일반 인공지능의 구현에 있어서 핵심적이기에 연구자들의 오랜 소망이었다. 이러한 필요에 따라,

계속적 학습, 평생 기계학습 분야는 다양한 분야에 걸쳐 단일 모델이 순차적으로 들어오는 다양한 테스크를

계속적으로 학습하는 문제를 제안하였다. 본 저자의 장기적 연구 목표는 많은 수의 지속가능한 온-디바이스

온라인 계속적 학습 에이전트들을 포함한 포괄적 학습 시스템을 구축하는 것이며 이 때 임베디드 머신들

은 끊임없이 들어오는 비정체 1인칭 비디오 스트림으로 표현된 장비 착용자의 혹은 장비 자체의 경험을

학습하는 것을 목표로 한다. 각각 에이전트들은 독립적으로 그들의 경험을 학습하나 중앙 서버의 중재를

통한 지식 공유 및 확장을 가능케 한다. 이 때 서버는 정보의 축적과 병합을 수행하고 시스템에 참여한

에이전트들의 필요에 따라 적합한 정보를 송신한다. 요약하면, 이러한 학습 시스템에서 본 저자는 세 가지

해결해야할 문제를 제시한다. 첫 번째, 온-디바이스 AI 는 하드웨어 종류와 해결해야하는 문제의 어려움에

따라 적합하게 제한된 메모리/컴퓨팅 리소스를 활용해 문제를 해결해야 한다. 두 번째, 에이전트들은 다른

에이전트들의 경험과 지식을 필요에 따라 선택적으로 전이할 수 있어야 한다. 세 번째, 본 시스템은 실세계

데이터를 실시간으로 학습하는 것을 목표로 하고 있으며, 이 때 실세계 데이터는 많은 수의 중복, 불균형,

노이즈가 포함된 정보를 함유하고 있을 뿐 아니라 레이블 정보가 없을 수도 있다. 즉, 학습 모델은 정제되지

않거나 레이블링되어있지 않은 데이터를 안정적으로 학습할 수 있어야 한다. 본 학위 논문에서는 앞서 말

한 문제점을 해결하여 실세계를 위한 지속가능한 온-디바이스 온라인 계속적 학습을 구현하기 위해 다양한

관점에서 연구를 수행하였다.

핵 심 낱 말 계속적 학습, 평생 기계학습, 온-디바이스 학습, 연합 학습, 표현형 학습, 온라인 학습

Abstract

Humans possess the ability to learn a large number of tasks by accumulating knowledge and skills over

time. Building a system resembling human learning abilities is a deep-rooted desire since sustainable

learning over a long-term period is essential for general artificial intelligence. In light of this need,

continual learning (CL), or lifelong learning, tackles a learning scenario where a model continuously learns

over a sequence of tasks within a broad research area. For my long-term research goal, I aim to encompass

broad research fields to understand humans and impact our real lives through sustainable on-device

AI systems with multiple agents. Embedded machines persistently learn human users’ experiences,

formulated to non-stationary online egocentric video streams. While multiple agents learn their local

experiences separately, they can communicate with each other to expand and evolve their knowledge

hosted by the server. The server contributes to stacking and merging the local knowledge on various

problems and re-distributing them to participating agents on demand. However, this learning paradigm

raises several crucial challenges, First, on-device AI has limited computational and memory budgets

according to the hardware and difficulties of local sequential tasks. Second, the agent should adaptively

transfer the relevant knowledge from other devices’ experience. Further, we aim to train on real-world



data in an online manner, and the real-world data contain a large amount of redundant, imbalanced, and

noisy, as well as unlabeled instances. That is, the model should cope with not refined and unannotated

training data. And this thesis proposes methods from multiple perspectives for solving these challenges of

sustainable on-device, online continual learning for the real world.

Keywords continual learning, lifelong machine learning, on-device learning, federated learning, represen-

tation learning, online learning
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Chapter 1. Introduction

1.1 Lifelong Machine Learning

Humans possess the ability to learn a large number of tasks throughout a lifespan by accumulating

and improving knowledge over time. Building a system resembling human learning abilities is essential

for Artificial General Intelligence (AGI) since sustainable learning over a long-term time period is an

important aspect of human intelligence. Suppose that a model trains on ImageNet [78] 22k classes at the

beginning. Depending on your needs, you may ask a model to perform more than a million fine-grained

classifications. Also, new classes that require classification may be added over time. That is, not all

training data might be available when we want to begin training the network in many real-world scenarios,

and real-world AGI should manage such irreversible shifts in data distributions (Please see Figure 1.1).

Figure 1.1: In real-world scenarios, all training data might not be available when we begin to train

the network.

In light of this need, Continual Learning (CL) [152] or lifelong learning, a paradigm for learning a

series of tasks in a sequential manner [80, 97], has been gaining in popularity. One of the major goals of a

continual learner is to mimic human cognition, exemplified by the ability to persistently learn new concepts

over his/her lifespan. While continual learning is considered a broad field, such as classification [74, 19],

image generation [182], language learning [96, 9], clinical application [86, 91], speech recognition [132],

and federated learning [174], it is basically organized into the following training scheme: First, a single

model receives tasks in sequential order while losing the accessibility of past task data when a model

meets new tasks. Next, a model transfers the knowledge from previously learned tasks to solve current

task problems. Here, continual learning assumes that the model no longer has access to past data, so

the model loses fidelity to past tasks while refining previously learned knowledge to incoming tasks.

Conventional continual learning methods have focused on alleviating this knowledge-forgetting issue,

which is a well-known challenge, often called catastrophic forgetting [104] or catastrophic interference.

The mammalian brain avoids catastrophic forgetting by protecting previously-acquired knowledge in

neocortical circuits as long-term memory. When external sensory information arrives, the brain encodes

it in the hippocampus (initial memory). Neocortical synapses then consolidate the acquired knowledge to

be stable through the repeated replay. After that, initial memory is renormalized for future training.
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While continual learning [80, 131] is a long-studied topic with a vast literature, we only discuss

recent relevant works and broadly categorize them in three directions. Multiple works adopt more than

one approach to a single continual learning model. (1) Regularization-based approach [74, 90, 137,

109, 153, 108] is to use regularizations that prevent catastrophic forgetting. (2) Architecture-based

approach [130, 178, 170, 95, 175] introduces additional learnable parameters to overcome the limited

expressiveness issue in continual learning. (3) Rehearsal-based approach [102, 125, 19, 4, 3, 20] stores

a few instances of past task data in a fixed-memory size replay buffer and revisits them during future

task training to mitigate forgetting.

1.2 Sustainable On-device Artificial Intelligence

Knowledge Base (KB)

…

Real-World and Non-IID
Egocentric Videos 

Taken from Edge Devices

Server...

Frame 1,2,3, ... Frame T-1, T, ...

...

Client 1

...

Client 2

...

Client K

…

Real-time Knowledge Transfer and 
Federation across Multiple Devices

On-device, Online Continual Learning 
for Audio-Text-Video Multimodality

Figure 1.2: Multi-agent On-device, Online Continual Learning System over Real-world Multimodal

Data.

For my long-term research goal, I aim to encompass broad research fields to understand humans

and impact our real lives through sustainable on-device AI systems with multiple agents illustrated

in Figure 1.2. Embedded machines persistently learn human users’ experiences, formulated to non-

stationary online egocentric video streams containing audio-video multimodality. While multiple agents

learn their local experiences separately, they can communicate with each other to expand and evolve

their knowledge hosted by the central server. The server contributes to stacking and merging the local

knowledge on various problems and re-distributing them to participating agents on demand. However,

this learning paradigm raises several crucial challenges:

Resource requirement/allowance varies according to the devices and tasks. On-device AI

has limited computational and memory budgets according to devices and difficulties of local sequential

tasks. One of the critical factors in the success of on-device continual learners is effectively utilizing

limited hardware resources as models train on new tasks continuously. Moreover, as on-device learning

machines often receive an unlimited sequence of tasks in real-time and immediately lose accessibility to

the past data corpus, the knowledge obtained from past data/tasks is more susceptible to overwritten

with new ones.

Machines limit their training sources from direct experience. Humans can learn from

indirect experiences from others via different means (e.g., making conversations and reading books). In

a similar vein, allowing communication across multiple on-device continual learners is pragmatic and

attractive as they efficiently extend knowledge with data privacy-preserving weight transfer beyond the

resource limits in a single device. And the server should transmit knowledge to heterogeneous tasks and

devices adaptively.

Training instances are often not refined/annotated. As we aim to train on real-world data in
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an online manner, the model should cope with not refined and unannotated training data. While most

deep learning algorithms assume that all the instances are sufficiently informative and valuable, data in

the wild collected by personal devices include a large amount of redundant and noisy inputs, which may

degrade the model adaptation for target problems and yield severe forgetting of past knowledge. Also,

as the annotation process is time-consuming and expensive in most on-device, online learning setups,

capturing representations on unlabeled data streams is essential.

(a) Efficient knowledge increment with limited

memory resource

(b) Communicability across

multiple devices

(c) Not refined or unannotated

data in the wild

Figure 1.3: Challenges of on-device continual learning for real-world.

During my Ph.D., I have tackled the practical challenges of deploying on-device, online continual

learning methods from varying perspectives in the following chapters. We have presented scalable and

efficient continual learning methods [178, 175] to tackle the limited resource allowance issue for on-device

continual learning in Chapter 2. To transfer indirect experience across multiple agents, I have worked on

solving Federated Learning for continual [174] learning tasks or for bitwidth heterogeneous devices [177]

in Chapter 3. Lastly, I have addressed data in the wild problem for uncurated [176] and unsupervised [103]

continual learning, as well as video representation learning [58] in Chapter 4. Then, I will describe my

ongoing and future research plan in Chapter 5.
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Chapter 2. Scalable and Efficient Continual Learning

2.1 Lifelong Learning with Dynamically Expandable Networks [178]

2.1.1 Motivation

While many different approaches exist to tackle Lifelong learning [152], we consider it under deep

learning to exploit the power of deep neural networks. Fortunately, storing and transferring knowledge

can be done straightforwardly for deep learning through the learned network weights. The learned

weights can serve as the knowledge for the existing tasks, and the new task can leverage this by simply

sharing these weights. Therefore, we can consider lifelong learning simply as a particular case of online

or incremental learning in the case of deep neural networks. There are multiple ways to perform such

incremental learning [130, 188]. The simplest way is to incrementally fine-tune the network to new tasks

by continuing to train the network with new training data. However, such simple retraining of the network

can degenerate the performance for both the new and old tasks. If the new task is largely different from

the older ones, such as in the case where previous tasks are classifying images of animals, and the new

task is to classify images of cars, then the features learned on the previous tasks may not be helpful for

the new one. At the same time, the retrained representations for the new task could adversely affect the

old tasks, as they may have drifted from their original meanings and are no longer optimal for them.

For example, the feature describing the stripe pattern from zebra may change its meaning for the later

classification task for classes such as striped t-shirts or fences, which can fit the feature and drastically

change its meaning.

(a) Retraining w/o expansion (b) No-retraining w/ expansion (c) Partial retraining w/ expansion

Figure 2.1: Concept: (a) Retraining models such as Elastic Weight Consolidation (EWC) [74] retrain the

entire network learned on previous tasks while regularizing it to prevent significant deviation from the original

model. Retrained units and weights are highlighted in red and fixed ones in black. (b) Non-retraining models

such as Progressive Network [130] expand the network for the new task t while withholding modification of

network weights for previous tasks. (c) Our DEN selectively retrains the old network, expanding its capacity

when necessary and thus dynamically deciding its optimal capacity as it trains on.

Then how can we ensure that the knowledge sharing through the network is beneficial for all tasks

in the online/incremental learning of a deep neural network? Existing regularization-based models, like

Elastic Weight Consolidation [74] or Synaptic Intelligence [181], use a regularizer to prevent the parameters

from drastically changing their values. They are applicable for on-device AIs with limited memory capacity
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but are often suboptimal when tasks increase due to their fixed expressiveness. Progressive Network [130]

expands the network with a fixed number of neurons for incoming tasks while blocking any changes to

the old task weights, resulting in a linear increase in the model size.

Our strategy differs from both approaches since we retrain the network at each task so that each

new task utilizes and changes only the relevant part of the previously trained network while allowing it

to expand the network capacity when necessary. In this way, each task will use a different subnetwork

from the previous tasks while still sharing a considerable part of the subnetwork with them. Figure 2.1

illustrates our model in comparison with existing deep lifelong learning methods. There are a number of

challenges that need to be tackled for such incremental deep learning settings with selective parameter

sharing and dynamic layer expansion.

1) Achieving scalability and efficiency in training: If the network grows in capacity, training

cost per task will increasingly grow as well since the later tasks will establish connections to a much

larger network. Thus, we need a way to keep the computational overhead of retraining to be low.

2) Deciding when to expand the network, and how many neurons to add: The network

does not need to expand its size if the old network sufficiently explains the new task. On the other hand,

it might need to add in many neurons if the task is very different from the existing ones. Hence, the

model needs to add only the necessary number of neurons on demand.

3) Preventing semantic drift, or catastrophic forgetting : Our method might also negatively

affect the prior tasks by establishing connections to an old subnetwork even if we partially retrain the

network to fit later learned tasks and add new neurons. That is, we need a mechanism to prevent potential

semantic drift.

To overcome such challenges, we propose a novel deep network model with an efficient and effective

incremental learning algorithm named Dynamically Expandable Networks (DEN). In a lifelong learning

scenario, DEN maximally utilizes the network learned on all previous tasks to efficiently learn to predict

for the new task while dynamically increasing the network capacity by adding in or splitting/duplicating

neurons when necessary. Our method is applicable to any deep generic networks, including convolutional

networks. We validate our incremental deep neural network for lifelong learning on multiple public

datasets, on which it achieves similar or better performance than the model that trains a separate network

for each task while using only 11.9%p − 60.3%p of its parameters. Further, fine-tuning the learned

network on all tasks obtains even better performance, outperforming the batch model by as much as

0.05%p−4.8%p. Thus, our model can be also used for structure estimation to obtain optimal performance

over network capacity even when batch training is possible, which is a more general setup.

2.1.2 Related Work

Lifelong learning Lifelong learning is the learning paradigm for continual learning where the model

learns from a sequence of tasks while transferring knowledge obtained from earlier tasks to later ones. It

has been extensively studied due to its practicality in scenarios where the data arrives in streams, such as

autonomous driving or learning of robotic agents. Lifelong learning often tackles an online multi-task

learning problem, focusing on efficient training with knowledge transfer. ELLA [131] suggests an online

lifelong learning framework based on an existing multi-task learning formulation that efficiently updates

latent parameter bases for a sequence of tasks. The method removes the dependency on previous tasks to

learn each task predictor and prevent retraining previous task predictors. Some recent work focus on

the theoretical aspects of lifelong learning. Pentina and Lampert [118] provide a PAC-Bayesian bound

for lifelong learning, and they further explored lifelong learning with non-i.i.d. tasks [119]. Pentina et
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al. [120] propose an algorithm that predicts each task with the majority votes over all previous task

predictors. Recently, lifelong learning has been studied in deep learning frameworks; since lifelong learning

of a deep neural network can be straightforwardly done by simple retraining, the primary focus of research

is overcoming catastrophic forgetting [74, 130, 181, 90].

Preventing catastrophic forgetting Incremental or lifelong learning of deep networks results in the

problem known as catastrophic forgetting, which describes the network forgetting learned for previous

tasks when retraining the network for new tasks. One solution to this problem is to use a regularizer

that prevents the new model from deviating too much from the previous one, such as ℓ2-regularizer.

However, using the simple ℓ2-regularizer prevents the model from learning new knowledge for the new

tasks, resulting in suboptimal performances on later tasks. To overcome this limitation, Elastic Weight

Consolidation (EWC) [74] regularizes the model parameter at each step with the model parameter at the

previous iteration via the Fisher information matrix for the current task, which enables us to find a good

solution for both tasks. Synaptic Intelligence (SI) [181] proposes a similar approach, but their approach

computes the per-synapse consolidation in an online manner and considers the entire learning trajectory

rather than the final parameter value. Another way to prevent catastrophic forgetting is to block any

previous network modifications completely. At each learning stage, Progressive Network [130] expands

the network with a subnetwork with fixed capacity and trains it along with incoming weights from the

original network, which is not backpropagated in the process.

2.1.3 Approach

We consider the problem of incremental training of a deep neural network under the lifelong learning

scenario, where the unknown number of tasks with unknown training data distributions arrive at the

model in sequence. Specifically, our goal is to learn models for a sequence of T tasks, t = 1, · · · , t, · · · , T
for unbounded T where the task at time point t comes with training data Dt = {xi, yi}Nt

i=1. Note that

each task can be either a single task or a comprised set of subtasks. While our method is generic to any

task, we only consider the binary classification task for simplification, that is, y ∈ {0, 1} for input feature
x ∈ Rd. The main challenge in the lifelong learning setting is that all the previous training datasets up

to t− 1 are not available at the current time t and only the model parameters for the previous tasks are

accessible. The lifelong learning agent at time t aims to learn the model parameter W t by solving the

following problem:

minimize
W t

L
(
W t;W t−1,Dt

)
+ λΩ

(
W t

)
, ∀t ∈ {1, . . . , T} (2.1)

where L is task-specific loss function, W t is the parameter for task t, and Ω (W t) is the regularization

(e.g., element-wise ℓ2 norm) to enforce our model W t appropriately. In the case of a neural network

which is our primary interest, W t = {Wl}Ll=1 is the set of weight tensors for all layers. To tackle these

challenges of lifelong learning, we let the network maximally utilize the knowledge obtained from the

previous tasks while allowing it to dynamically expand its capacity when the accumulated knowledge

alone cannot sufficiently explain the new task. Figure 2.2 and Algorithm 1 describe our incremental

learning process.

In the following subsections, we describe each component of our incremental learning algorithm in

detail: 1) Selective retraining, 2) Dynamic network expansion, and 3) Network split/duplication.
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Figure 2.2: Incremental learning of a dynamically expandable network: Left: Selective retraining.

DEN first identifies neurons that are relevant to the new task and selectively retrains the network parameters

associated with them. Center: Dynamic network expansion. If the selective retraining fails to obtain desired loss

below the threshold, we expand the network capacity in a top-down manner, while eliminating any unnecessary

neurons using group-sparsity regularization. Right: Network split/duplication. DEN calculates the drift ρti for

each unit to identify units that have drifted too much from their original values during training and duplicate

them.

Algorithm 1 Incremental Learning of a Dynamically Expandable Network

1: Input: Dataset D = (D1, . . . ,DT ), Thresholds τ , σ

2: Output: W T

3: for t = 1, . . . , T do

4: if t = 1 then

5: Train the network weights W 1 using Equation 2.2

6: else

7: W t = SelectiveRetraining(W t−1) ▷ Selectively retrain the previous network using Algorithm 2

8: if Lt > τ then

9: W t = DynamicExpansion(W t) ▷ Expand the network capacity using Algorithm 3

10: end if

11: W t = Split(W t) ▷ Split and duplicate the units using Algorithm 4

12: end if

13: end for

Selective retraining

A most naive way to train the model for a sequence of tasks would be retraining the entire model

every time a new task arrives. However, such retraining will be very costly for a deep neural network.

Thus, we suggest performing selective retraining of the model by retraining only the weights affected

by the new task. Initially (t=1), we train the network with ℓ1-regularization to promote sparsity in the

weights, such that each neuron is connected to only a few neurons in the layer below.

minimize
W t=1

L
(
W t=1;Dt

)
+ µ

L∑
l=1

∥∥W t=1
l

∥∥
1
, (2.2)

where 1 ≤ l ≤ L denotes the lth layer of the network, W t
l is the network parameter at layer l, and µ is

the regularization parameter of the element-wise ℓ1 norm for sparsity on W . For convolutional layers,

we apply (2, 1)-norm on the filters, to select only a few filters from the previous layer. Throughout our

incremental learning procedure, we maintain W t−1 to be sparse, thus we can drastically reduce the

computation overheads if we can focus on the subnetwork connected new task. To this end, when a new
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task t arrives at the model, we first fit a sparse linear model to predict task t using the topmost hidden

units of the neural network by solving the following problem:

minimize
W t

L,t

L
(
W t

L,t ;W
t−1
1:L−1,Dt

)
+ µ

∥∥W t
L,t

∥∥
1
, (2.3)

where W t−1
1:L−1 denotes the set of all other parameters except W t

L,t. That is, we solve this optimization

to obtain the connections between output unit ot and the hidden units at layer L− 1 (fixing all other

parameters up to layer L − 1 as W t−1). Once we build the sparse connection at this layer, we can

identify all units and weights in the network that are affected by the training, while leaving the part of

the network that is not connected to ot unchanged. Specifically, we perform a breadth-first search on the

network starting from those selected nodes, to identify all units (and input feature) that have paths to ot.

Then, we train only the weights of the selected subnetwork S, denoted as W t
S :

minimize
W t

S

L
(
W t

S ;W t−1
Sc ,Dt

)
+ µ

∥∥W t
S

∥∥
2
. (2.4)

We use the element-wise ℓ2 regularizer since the sparse connections have already been established1.

This partial retraining will result in lower computational overhead and also help with avoiding negative

transfer since neurons that are not selected will not get affected by the retraining process. Algorithm 2

describes the selective retraining process.

Algorithm 2 Selective Retraining

1: Input: Dataset Dt, Previous parameter W t−1

2: Output: network parameter W t

3: Initialize l← L− 1, S = {ot}
4: Solve Equation 2.3 to obtain W t

L,t

5: Add neuron i to S if the weight between i and ot in W t
L,t is not zero.

6: for l = L− 1, . . . , 1 do

7: Add neuron i to S if there exists some neuron j ∈ S such that W t−1
l,ij ̸= 0.

8: end for

9: Solve Equation 2.4 to obtain W t
S

Dynamic network expansion

In cases where the new task is highly relevant to the old ones, or aggregated partial knowledge

obtained from each task is sufficient to explain the new task, selective retraining alone will be sufficient for

the new task. However, when the learned features cannot accurately represent the new task, additional

neurons need to be introduced to the network, in order to account for the features that are necessary

for the new task. Some existing works [188, 130] are based on a similar idea. However, they are either

inefficient due to iterative training that requires repeated forward pass [188], or adds in the constant

number of units at each task t without consideration of the task difficulty [130] and thus are suboptimal

in terms of performance and network capacity utilization.

To overcome these limitations, we instead propose an efficient way of using group sparse regularization

to dynamically decide how many neurons to add at which layer, for each task without repeated retraining

of the network for each unit. Suppose that we expand the lth layer of a network with a constant number of

units, say k, inducing two parameter matrices expansions: W t
l = [W t−1

l ;WN
l ] and W t

l−1 = [W t−1
l−1 ;W

N
l−1]

1We can add in ℓ1-norm here for further identification of necessary weights
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for outgoing and incoming layers respectively, where WN is the expanded weight matrix involved with

added neurons. Since we do not always want to add in all k units (depending on the relatedness between

the new task and the old tasks), we perform group sparsity regularization on the added parameters as

follows:

minimize
WN

l

L
(
WN

l ;W t−1
l ,Dt

)
+ µ

∥∥WN
l

∥∥
1
+ γ

∑
g

∥∥WN
l,g

∥∥
2
, (2.5)

where g ∈ G is a group defined on the incoming weights for each neuron. For convolutional layers, we

defined each group as the activation map for each convolutional filter. This group sparsity regularization

was used in [160, 5, 172] to find the right number of neurons for a full network, while we apply it to the

partial network. Algorithm 3 describes the details of how expansion works.

After selective retraining is done, the network checks if the loss is below a certain threshold. If not,

then at each layer, we expand its capacity by k neurons and solve for Equation 2.5. Due to group sparsity

regularization in Equation 2.5, hidden units (or convolutional filters) that are deemed unnecessary from

the training will be dropped altogether. We expect that from this dynamic network expansion process,

the model captures new features that were not previously represented by W t−1
l to minimize residual

errors while maximizing the utilization of the network capacity by avoiding adding in too many units.

Algorithm 3 Dynamic Network Expansion

1: Input: Dataset Dt, Threshold τ

2: Perform Algorithm 2 and compute L
3: if L > τ then

4: Add k units hN at all layers

5: Solve for Equation 2.5 at all layers

6: end if

7: for l = L− 1, . . . , 1 do

8: Remove useless units in hN
l

9: end for

Network split/duplication

A crucial challenge in lifelong learning is the problem of semantic drift, or catastrophic forgetting,

which describes the problem where the model gradually fits the later learned tasks and thus forgets what

it learned for earlier tasks, resulting in degraded performance for them. The most popular yet simple way

of preventing semantic drift is to regularize the parameters from deviating too much from their original

values using ℓ2-regularization, as follows:

minimize
W t

L(W t;Dt) + λ∥W t −W t−1∥22, (2.6)

where t is the current task, and W t−1 is the weight tensor of the network trained for tasks {1, . . . , t− 1},
and λ is the regularization parameter. This ℓ2 regularization will enforce the solution W t to be found

close to W t−1, by the degree given by λ; if λ is small, then the network will be learned to reflect the

new task more while forgetting about the old tasks, and if λ is high, then W t will try to preserve the

knowledge learned at previous tasks as much as possible. Rather than placing simple ℓ2 regularization, it

is also possible to weight each element with Fisher information [74]. Nonetheless, if the number of tasks

is large, or if the later tasks are semantically disparate from the previous tasks, it may become difficult to

find a good solution for both previous and new tasks.
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A better solution in such a case is to split the neuron so that we have optimal features for two

different tasks. After performing Equation 2.6, we measure the semantic drift for each hidden unit i, ρti,

as the ℓ2-distance between the incoming weights at t − 1 and t. Then if ρti > σ, we consider that the

meaning of the feature has significantly changed during training, and split this neuron i into two copies.

We perform this operation for all hidden units in parallel. The network then trains the weights again

by solving Equation 2.6 since split changes the overall structure. However, in practice, this secondary

training usually converges fast due to the reasonable parameter initialization from the initial training.

Algorithm 4 describes the algorithm for split operation.

Algorithm 4 Network Split/Duplication

1: Input: Weight W t−1, Threshold σ

2: Perform Equation 2.6 only using weights activated in t− 1 stage

3: for all hidden unit i do

4: ρti = ∥wt
i −wt−1

i ∥2
5: if ρti > σ then

6: Copy i into i′ (w′ introduction of edges for i′)

7: end if

8: end for

Timestamped inference

In both the network expansion and split procedures, we timestamp each newly added unit j by

setting {z}j = t to record the training stage t when it is added to the network to prevent knowledge

shift caused by introducing new hidden units. At inference time, each task will only use the parameters

introduced up to stage t to prevent the old tasks from using new hidden units added in the training

process. This timestamping strategy is more flexible than fixing the weights learned up to each learning

stage, as in [130], since early tasks can still benefit from the learning at later tasks via units that are

further trained but not split.

2.1.4 Experimental Results

Baselines and our model

DNN-STL: A Base Deep Neural Network (DNN) that trains on each task separately.

DNN-MTL: A Base DNN that trains on all tasks at once.

DNN: A Base DNN. All incremental models use weight decay.

DNN-L2: A Base DNN, where at each task t, W t is initialized as W t−1 and continuously trained with

ℓ2-regularization between W t and W t−1.

DNN-EWC: A DNN trained with Elastic Weight Consolidation (EWC) [74] for regularization.

DNN-Progressive: Our implementation of the Progressive Network [130], whose network weights for

each task remain fixed for the later arrived tasks.

DEN: Our dynamically expandable network.

Base network settings

Feedforward networks: We use a two-layer network with 312-128 neurons with ReLU activations.

Convolutional networks: For experiments on the CIFAR-100 dataset, we use a modified version of
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AlexNet [78] that has five convolutional layers (64-128-256-256-128 depth with 5× 5 filter size), and three

fully-connected layers (384-192-100 neurons at each layer).

All models and algorithms are implemented using the Tensorflow [1] library. We will release our

codes upon acceptance of our paper for the reproduction of the results.

Datasets

MNIST-Variation: This dataset consists of 62, 000 images of handwritten digits from 0 to 9. Unlike

MNIST, the handwritten digits are rotated to arbitrary angles and have noise in the background, which

makes the prediction task more challenging. We use 1, 000/200/5, 000 images for train/val/test split for

each class. We form each task to be an one-versus-rest binary classification.

CIFAR-100: This dataset consists of 60, 000 images of 100 generic object classes[77]. Each class has 500

images for training and 100 images for test. We used a CNN as the base network for the experiments on

this dataset, to show that our method is applicable to a CNN. Further, we considered each task as a set

of 10 subtasks, each of which is a binary classification task on each class.

AWA (Animals with Attributes): This dataset consists of 30, 475 images of 50 animals [82]. For

features, we use DECAF features provided with the dataset, whose dimensionality is reduced to 500 by

PCA. We use random splits of 30/30/30 images for training/validation/test.

Quantitative evaluation

We validate our models for prediction accuracy and efficiency, where we measure the efficiency by

network size at the end of training and training time. We first report the average per-task performance of

baselines and our models in the top row of Figure 2.3. DNN-STL showed the best performances over

AWA and CIFAR-100 datasets as it trained each task separately, finding individual optimal solutions

without forgetting. On the other hand, all other models train on given tasks sequentially, which might

cause semantic drift. When the number of tasks is small, MTL works best from knowledge sharing via

multi-task learning. But when the number of tasks is large, STL works better since it has a larger learning

capacity than MTL.

Our proposed DEN performs almost the same as these batch models and even outperforms them

on the MNIST-Variation dataset. Retraining models combined with regularization, such as L2 and

EWC, do not perform well because these models suffer from limited expressiveness during lifelong

learning. Progressive network works better than the two, but it underperforms DEN on all datasets. The

performance gap is most significant on AWA, as a larger number of tasks (T = 50) may have made it more

challenging to find the appropriate network capacity. If the network is too small, then it will not have

sufficient learning capacity to represent new tasks, and if too large, it will become prone to overfitting.

We further report the performance of each model over network capacity measured relative to MTL

on each dataset in Figure 2.3 (bottom row). For baselines, we report the performance of multiple models

with different network capacities. DEN obtains much better performance with a substantially fewer

number of parameters than Progressive network or obtains significantly better performance using a

similar parameter size. DEN also obtains the same level of performance as STL using only 18.0%, 60.3%,

and 11.9% of its capacity on MNIST-Variation, CIFAR-100, and AWA, respectively. The result also

shows the main advantage of DEN, which is being able to dynamically find its optimal capacity since

it learns a very compact model on MNIST-Variation, whilst learning a substantially large network on

CIFAR-100. Further fine-tuning of DEN on all tasks (DEN-Finetune) obtains the best-performing model
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Figure 2.3: Top row:Average per-task performance of the models over number of task t, averaged over five

random splits. The numbers in the legend denote average per-task performance after the model has finished

learning (t = T ). Bottom row: Accuracy over network capacity. The network capacity is given relative to the

capacity of MTL, which we consider as 100%.

on all datasets, which shows that DEN is useful for lifelong learning and can be used for network capacity

estimation when all tasks are available in the first place.

Effect of selective retraining We further examine how efficient and effective selective training is

by measuring the training speed and the area under the ROC curve on MNIST-Variation dataset. We

compare the model without network expansion, which we refer to as DNN-Selective, against retraining on

DNN-L2 and DNN-L1 (Equation 2.2). Section 2.1.4 (a) shows the accuracy over training time measured

as actual time spent with GPU computation for each model. We observe that selective retraining takes

significantly less training time than the full retraining of the network and even less than DNN-L1, which

comes with sparse network weights. Further, whereas DNN-L1 obtained slightly less accuracy than

DNN-L2, DNN-Selective improved the accuracy over the base network by 2%p. This accuracy gain may

be due to the suppression of catastrophic forgetting, as DEN trains only a partial subnetwork for each

newly introduced task. Section 2.1.4 (b) shows the number of selected neurons at each layer with selective

retraining. Note that DNN-selective mostly selects less portion of upper-level units, which are more

task-specific, while selecting a larger portion of more generic lower-layer units.

Effect of network expansion We also compare the effectiveness of the network expansion against the

model with a variant of our model that performs selective retraining and layer expansion without network

split. We refer to this model as DNN-Dynamic. We compare DNN-Dynamic with DNN-L2 used in the

main experiment and DNN-Constant, a version of our model that expands its capacity at each layer

with a fixed number of units, on MNIST-Variation dataset. Section 2.1.4 (c) shows that DNN-Dynamic

significantly outperforms all baselines in terms of the mean AU-ROC, including DNN-Constant, while
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Figure 2.4: Effect of selective retraining. (a) shows AUROC over actual training time and (b) shows

the number of selected neurons by selective retraining. (c) Expansion performance. We report both the

prediction AUROC and network capacity measured by the relative number of parameters to that of DNN-MTL

on MNIST-Variance dataset. Reported numbers are mean and standard error for five random splits.
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Figure 2.5: Semantic drift experiment on the MNIST-Variation dataset. We report the AUROC of

different models on t = 1, t = 4, and t = 7 at each training stage to see how the model performance changes over

time for these tasks. Reported AUROC is the average over five random splits.

increasing the size of the network substantially less than DNN-Constant (k=20). That is, having less

number of parameters is beneficial for training efficiency and advantageous in preventing the model from

overfitting. We can set the network capacity of DNN-Constant to be similar (k=13) to obtain better

accuracy, but it still underperforms DEN, which can dynamically adjust the number of neurons at each

layer.

Effect of network split/duplication and timestamped inference To see how network split and

duplication and unit timestamping help prevent semantic drift (or catastrophic forgetting) while allowing

to obtain good performances on later tasks, we compare the performance of our model against baselines

and also a variant of our DEN without timestamped inference (DEN-No-Stamp) at different learning

stages. Each figure in Figure 2.5 (a), (b), and (c) shows how the performance of the model changes at

each training stage t, for tasks t = 1, t = 4, and t = 7, respectively.

We observe that DNN-L2 prevents semantic drift of the models learned at early stages but results in

increasingly worse performance on later tasks (t = 4, 7). DNN-EWC, on the other hand, performs better on

later tasks than DNN-L2, as reported in [74]. However, it shows significantly lower performance than both

DNN-Progressive and our model, which may be due to its inability to increase network capacity, resulting

in limited expressive power. DNN-Progressive shows no semantic drift on old tasks because it does not

retrain parameters for them. DEN w/o Timestamping works better than DNN-Progressive on later tasks,
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with slight performance degeneration over time. Finally, our full model with timestamped inference,

DEN, shows no sign of noticeable performance degeneration at any learning stage while significantly

outperforming DNN-Progressive, showing that DEN is highly effective in preventing semantic drift.

2.1.5 Summary

We proposed a novel deep neural network for lifelong learning, Dynamically Expandable Network

(DEN). DEN performs partial retraining of the network trained on old tasks by exploiting task-relatedness.

Also, DEN dynamically increases its capacity when necessary to account for new knowledge for incoming

tasks during lifelong learning. To this end, we find its optimal capacity for solving the problem and

effectively preventing semantic drift. We implement both feedforward and convolutional neural network

version of our DEN and validate them on multiple classification datasets under lifelong learning scenarios,

on which they significantly outperform the existing lifelong learning methods, achieving almost the same

performance as the network trained in batch while using as little as 11.9%p − 60.3%p of its capacity.

Further, the fine-tuning of the models on all tasks results in obtaining models that outperform the batch

models, which shows that DEN is useful for network structure estimation as well.
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2.2 Scalable and Order-robust Continual Learning with

Additive Parameter Decomposition [175]

2.2.1 Motivation

Continual learning [152], or lifelong learning, is a learning scenario where a model is incrementally

updated over a sequence of tasks, potentially performing knowledge transfer from earlier tasks to later

ones. Building a successful continual learning model may lead us one step further towards developing

general artificial intelligence since learning numerous tasks over a long-term time period is an essential

aspect of human intelligence. Continual learning is often formulated as incremental/online multi-task

learning that models complex task-to-task relationships by sharing basis vectors in linear models [80, 131]

or weights in neural networks [97]. One problem that arises here is that as the model learns the new

tasks, it could forget what it learned for the earlier tasks, which is known as the problem of catastrophic

forgetting. Many recent works in continual learning of deep networks [97, 90, 141, 74, 127, 19] tackle

this problem by introducing advanced regularizations to prevent the drastic change of network weights.

Yet, when the model should adapt to multiple tasks, the interference between task-specific knowledge

is inevitable with fixed network capacity. Recently introduced expansion-based approaches handle this

problem by expanding the network capacity as they adapt to new tasks [130, 37, 178, 95]. These recent

advances have largely alleviated the catastrophic forgetting, at least with a small number of tasks.

However, to deploy continual learning to real-world systems, there are a number of issues that should

be resolved. First, in practical scenarios, the number of tasks that the model should train on may be

large. In the lifelong learning setting, the model may even have to continuously train on an unlimited

number of tasks. Yet, conventional continual learning methods have not been verified for their scalability

to a large number of tasks, both in terms of effectiveness in the prevention of catastrophic forgetting, and

efficiency as to memory usage and computations (See Figure 2.6 (a) and (b)).

Another critical but relatively less explored problem is the problem of task order sensitivity, which

describes the performance discrepancy with respect to the task arrival sequence (See Figure 2.6 (c)). The

task order that the model trains on significantly impacts the individual task performance as well as the

final performance, not only because of the model drift coming from catastrophic forgetting but due to the

unidirectional knowledge transfer from earlier tasks to later ones. This order sensitivity could be highly

problematic if fairness across tasks is important

To handle these practical challenges, we propose a novel continual learning model with emphAdditive

Parameter Decomposition (APD). APD decomposes the network parameters at each layer of the target

network into task-shared and sparse task-specific parameters with small mask vectors. At each arrival of a

task to a network with APD, which we refer to as APD-Net, it will try to maximally utilize the task-shared

parameters and learn the incremental difference that cannot be explained by the shared parameters

using sparse task-adaptive parameters. Moreover, since having a single set of shared parameters may not

effectively utilize the varying degree of knowledge-sharing structure among the tasks, we further cluster

the task-adaptive parameters to obtain hierarchically shared parameters (See Figure 2.7).

This decomposition of generic and task-specific knowledge has clear advantages in tackling the

previously mentioned problems. APD will greatly alleviate catastrophic forgetting since learning on later

tasks will not affect the task-adaptive parameters for the previous tasks and will update the task-shared

parameters only with generic knowledge. Since APD does not change the network topology as existing

expansion-based approaches do, APD-Net is memory-efficient, even more so with hierarchically shared
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Figure 2.6: Description of crucial challenges for continual learning with Omniglot dataset experiment. Catas-

trophic forgetting: Model should not forget what it has learned about previous tasks. Scalability: The

increase in network capacity with respect to the number of tasks should be minimized. Order sensitivity: The

model should have a similar final performance regardless of the task order. Our model with Additive Parameter

Decomposition effectively solves these three problems.

parameters. It also trains fast since it does not require multiple rounds of retraining. Moreover, it is

order-robust since the task-shared parameters can stay relatively static and will converge to a solution

rather than drift away upon the arrival of each task. The additional mechanism to retroactively update

task-adaptive parameters can further alleviate the order sensitivity from unidirectional knowledge transfer.

We validate our methods on several benchmark datasets for continual learning while comparing them

against state-of-the-art continual learning methods to obtain significantly superior performance with

minimal increase in network capacity while being scalable and order-robust.

The contribution of this paper is threefold:

• We tackle practically important and novel problems in continual learning that have been overlooked

thus far, such as scalability and order robustness.

• We introduce a novel framework for continual deep learning that effectively prevents catastrophic

forgetting. The proposed method is highly scalable and order-robust by decomposing the network

parameters into shared and sparse task-adaptive parameters with small mask vectors.

• We perform extensive experimental validation of our model on multiple datasets against recent

continual learning methods, whose results show that our method is significantly superior to them in

terms of accuracy, efficiency, scalability, as well as order-robustness.

2.2.2 Related Work

Continual learning The literature on continual (lifelong) learning [152, 131] is vast as it is a long-

studied topic, but we only mention the recent and relevant works. Most continual deep learning approaches

have focused on preventing catastrophic forgetting, in which case the retraining of the network for new

tasks shifts the distribution of the learned representations. Most continual deep learning approaches

are focused on preventing catastrophic forgetting, in which case the retraining of the network for new

tasks shifts the distribution of the learned representations. A simple yet effective regularization is to

enforce the representations learned at the current task to be closer to ones from the network trained on
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previous tasks [97]. EWC [74] and P&C [135] propose to regularize the model parameter for the current

tasks with parameters for the previous task via a Fisher information matrix to find a solution that works

well for both tasks. Lee et al. [90] introduce a moment-matching technique with a similar objective.

HAT [137] presents a new binary masking approach to minimize drift for important prior knowledge.

The model learns a pseudo-step function to promote hard attention, then builds a compact network with

marginal forgetting. But the model cannot expand the network capacity and performs unidirectional

knowledge transfer, thus suffering from the order-sensitivity. DGR [141] employs deep generative models

to compactly encode task knowledge and later generate samples from the model as it learns new tasks.

GEM [102] and A-GEM [19] introduce new directions for efficient continual learning with weighted

updates according to the gradients of episodic memory under single-epoch learning scenarios. VCL [113]

formulates continual learning as a sequential Bayesian update. The method utilizes the replay buffer to

mitigate forgetting when estimating the posterior distribution over weights for the new task. Riemer et

al. [127] addresses the stability-plasticity dilemma maximizing knowledge transfer to later tasks while

minimizing their interference on earlier tasks, using optimization-based meta-learning with experience

replay.

Dynamic network expansion Continual learners of fixed size are infeasible to immune catastrophic

forgetting even with well-defined regularizers as they may encounter an unlimited number of tasks. An

effective way to tackle this challenge is by dynamically expanding the network capacity to handle new

tasks. Zhou et al. [188] present an iterative algorithm to train a denoising autoencoder while adding

in new neurons one by one and merging similar units. Progressive [130] Network keeps the old weights

fixed to avoid catastrophic forgetting and expands the network by augmenting each layer with a fixed

number of additional neurons per task. Yet, this framework often results in a network with excessive

size. DEN [178] proposes to overcome this limitation via selective retraining of the old network while

expanding each layer with only the necessary number of neurons via neuronwise group sparsification.

With a similar objective, RCL [170] uses reinforcement learning to decide how many neurons to add. Li

et al. [95] propose to perform an explicit network architecture search to decide how much to reuse the

existing network weights and how much to add. Our model also performs dynamic network expansion as

the previous expansion-based methods, but instead of adding in new units, it additively decomposes the

network parameters into task-shared and task-specific parameters. Further, we minimize the increase of

model size at the arrival of each task by constraining the sparsity on the task-specific parameters and

adopting the hierarchical structure of shared parameters.

2.2.3 Approach

Assuming that a deep network receives a sequence of tasks {T1, . . . , TT } in random order in the

continual learning setting. We denote the dataset of the tth task as Dt = {xit,yit}
Nt
i=1, where xit and yit

are ith instance and label among Nt examples. We further assume that they become inaccessible after

step t. The set of parameters for the network at step t is given as Θt = {θlt}Ll=1, where θlt represents

the weights for layer l; we omit the layer index l when the context is clear. Then the training objective

at the arrival of task t can be defined as follows: minimize
Θt

L (Θt;Θt−1, Dt) + λR(Θt), where R(·) is a
regularization term on the model parameters. In the next paragraph, we introduce our continual learning

framework with task-adaptive parameter decomposition and hierarchical knowledge consolidation.
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Figure 2.7: An illustration of Additive Parameter Decomposition (APD) for continual learning.

APD effectively prevents catastrophic forgetting and suppresses order-sensitivity by decomposing the model

parameters into shared σ and sparse task-adaptive τt, which will let later tasks only update shared knowledge.

Mt is the task-adaptive mask on σ to transform generic knowledge to adapt the corresponding task. APD

enhances scalability through weight sparsification on τt and hierarchical knowledge consolidation.

Additive Parameter Decomposition

To minimize the impact of catastrophic forgetting and the amount of newly introduced parameters by

network expansion, we propose to decompose θ into a task-shared parameter matrix σ and a task-adaptive

parameter matrix τ , that is, θt = σ ⊗Mt + τt for task t. The masking variableMt acts as an attention

on the task-shared parameter to guide the learner to focus only on the parts relevant to each task. This

decomposition allows us to easily control the trade-off between semantic drift and predictive performance

of a new task by imposing separate regularizations on decomposed parameters. When a new task arrives,

we encourage the shared parameters σ to be properly updated, but not deviate far from the previous

shared parameters σ(t−1). At the same time, we enforce the capacity of τt to be as small as possible by

making it sparse. The objective function for this decomposed parameter model is given as follows:

minimize
σ,τt,vt

L ({σ ⊗Mt + τt};Dt) + λ1 ∥τt∥1 + λ2

∥∥∥σ − σ(t−1)
∥∥∥2
2
, (2.7)

where L denotes a loss function, σ(t−1) denotes the shared parameter before the arrival of the current task

t, ∥·∥1 indicates an element-wise ℓ1 norm defined on the matrix, and λ1, λ2 are hyperparameters balancing

efficiency catastrophic forgetting. We use ℓ2 transfer regularization to prevent catastrophic forgetting,

but we could use other types of regularizations as well, such as Elastic Weight Consolidation [74]. The

masking variableMt is a sigmoid function with a learnable parameter vt, which is applied to output

channels or neurons of σ in each layer. We name our model with decomposed network parameters,

Additive Parameter Decomposition (APD).

The proposed decomposition in Equation 2.7 makes continual learning efficient since, at each task,

we only need to learn an extremely sparse τt that accounts for task-specific knowledge that cannot be

explained with the transformed shared knowledge σ ⊗Mt. Thus, we are doing residual learning with τt.

Further, it helps the model achieve robustness to the task arrival order because semantic drift occurs only

through the task-shared parameter corresponding to generic knowledge, while the task-specific knowledge

learned from previous tasks is kept intact. Next, we introduce additional techniques to achieve even more

task-order robustness and efficiency.
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Algorithm 5 Continual learning with Additive Parameter Decomposition

input Dataset D1:T and hyperparameter λ,m, s,K = k

output σ(T ), v1:T , σ̃1:K , and τ1:T

1: Let σ(1) = θ1, and optimize for the task 1

2: for t = 2, ..., T do

3: for i = 1, ..., t− 1 do

4: Restore θ∗
i = σ(t−1) ⊗M(t−1)

i + τ̃
(t−1)
i

5: end for

6: Minimize Equation 2.9 to update σ and {τi,vi}ti=1

7: if t mod s = 0 then

8: Initialize k new random centroids, {µg}Kg=K−k+1

9: Group all tasks into K disjoint sets, {Gg}Kg=1

10: for g = 1, ...,K do

11: Decompose {τ̃i}i∈Gg into σ̃g and {τi}i∈Gg

12: end for

13: Delete old σ̃ and K = K + k

14: end if

15: end for

Order robust continual learning with retroactive parameter updates

We observe that a naive update of the shared parameters may induce semantic drift in parameters

for the previously trained tasks, yielding an order-sensitive model since we do not have access to previous

task data. In order to provide a high degree of order-robustness, we impose an additional regularization

to further prevent parameter-level drift without explicitly training on the previous tasks.

To achieve order-robustness in Equation 2.7, we need to retroactively update task-adaptive parameters

of the past tasks to reflect the updates in the shared parameters at each training step so that all previous

tasks are able to maintain their original solutions. Toward this objective, when a new task t arrives, we

first recover all previous parameters (θi for task i < t): θ∗
i = σ(t−1) ⊗M(t−1)

i + τ
(t−1)
i and then update

τ1:t−1 by constraining the combined parameter σ ⊗Mi + τi to be close to θ∗
i . The learning objective for

the current task t is then described as follows:

minimize
σ,τ1:t,v1:t

L ({σ ⊗Mt + τt};Dt) + λ1

t∑
i=1

∥τi∥1 + λ2

t−1∑
i=1

∥θ∗
i − (σ ⊗Mi + τi)∥22 . (2.8)

Compared to Equation 2.7, the task-adaptive parameters of previous tasks can now be retroactively

updated to minimize the parameter-level drift. This formulation also constrains the update of the

task-shared parameters to consider order-robustness.

Hierarchical knowledge consolidation

The objective function in Equation 2.8 does not directly consider local sharing among the tasks,

and thus it will inevitably result in the redundancy of information in the task-adaptive parameters. To

further minimize the capacity increase, we perform hierarchical knowledge consolidation to group relevant

task-adaptive parameters into task-shared parameters (See Figure 2.7). We first cluster all tasks into K

disjoint sets {Gg}Kg=1 using K-means clustering on {τi}ti=1, then decompose the task-adaptive parameters

in the same group into locally-shared σ̃g and task-adaptive parameters {τi}i∈Gg
(with higher sparsity) by

simply computing the amount of value discrepancy in each parameter as follows:
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• If max {τi,j}i∈Gg
−min {τi,j}i∈Gg

≤ β, then {τi,j}i∈Gg
= 0 and σ̃g,j = µg,j

• Else, σ̃g,j = 0,

where τi,j denotes the jth element of the ith task-adaptive parameter matrix, and µg is the cluster center

of group Gg. We update the locally-shared parameters σ̃g after the arrival of every s tasks for efficiency,

by performing K-means clustering while initializing the cluster centers with the previous locally-shared

parameters σ̃g for each group. At the same time, we increase the number of centroids to K + k to account

for the increase in the variance among the tasks.

Our final objective function is then given as follows:

minimize
σ,τ1:t,v1:t

L ({σ ⊗Mt + τt};Dt) + λ1

t∑
i=1

∥τi∥1 + λ2

t−1∑
i=1

∥θ∗
i − (σ ⊗Mi + τ̃i)∥22,

where τ̃i = τi + σ̃g for i ∈ Gg.

(2.9)

Algorithm 5 describes the training of our APD model.

Selective task forgetting

In real-world scenarios, some tasks learned at earlier stages may become irrelevant as we continue to

train the model. For example, you don’t need to recognize discontinued products when training a product

identification model. In such situations, we may want to forget the earlier tasks in order to secure network

capacity for later task learning. Unfortunately, existing continual learning methods cannot effectively

handle this problem since removing some features or parameters will also negatively affect the remaining

tasks as their parameters are entangled. Yet, with APDs, forgetting a task t can be done by dropping

out the task-adaptive parameters τt. Trivially, this will have absolutely no effect on the task-adaptive

parameters of the remaining tasks.

2.2.4 Experimental Results

We now validate APD-Net on multiple datasets against state-of-the-art continual learning methods.

We use a modified version of LeNet-5 [85] and VGG16 network [143] with batch normalization as base

networks.

Baselines and Our Models

L2-Transfer: Deep neural networks trained with the L2-transfer regularizer λ∥θt−θt−1∥2F when training

for task t.

EWC: Deep neural networks regularized with Elastic Weight Consolidation [74].

P&C: Deep neural networks with two-step training: Progress, and Compresss [135].

PGN: Progressive Neural Networks [130] which constantly increase the network size by k neurons with

each task.

DEN: Dynamically Expandable Networks [178] that selectively retrain and dynamically expand the

network size by introducing new units and duplicating neurons with semantic drift.

RCL: Reinforced Continual Learning proposed in [170] which adaptively expands units at each layer

using reinforcement learning.

APD-Fixed: APD-Net without the retroactive update of the previous task-adaptive parameters (Eq. equa-

tion 2.7).
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APD(1): Additive Parameter Decomposition Networks with depth 1, whose parameter is decomposed

into task-shared and task-adaptive parameters.

APD(2): APD-Net with depth 2, which also has locally shared parameters from hierarchical knowledge

consolidation.

Datasets

CIFAR-100 Split [77] consists of images from 100 generic object classes. We split the classes into 10

groups and consider 10-way multi-class classification in each group as a single task. We use 5 random

training/validation/test splits of 4, 000/1, 000/1, 000 samples.

CIFAR-100 Superclass consists of images from 20 superclasses of the CIFAR-100 dataset, where

each superclass consists of 5 different but semantically related classes. For each task, we use 5 random

training/validation/test splits of 2, 000/500/500 samples.

3) Omniglot-rotation [81] contains OCR images of 1, 200 characters (we only use the training set) from

various writing systems for training, where each class has 80 images, including 0, 90, 180, and 270 degree

rotations of the original images. We use this dataset for large-scale continual learning experiments by

considering the classification of 12 classes as a single task, obtaining 100 tasks in total. For each class, we

use 5 random training/test splits of 60/20 samples.

Quantitative Evaluation

Task-average performance We first validate the final task-average performance after the completion

of continual learning. To perform a fair evaluation of performance that is not order-dependent, we

report the performance on three random trials over five different task sequences over all experiments.

Table 2.1 shows that APD-Nets outperform all baselines by large margins in accuracy. We attribute this

performance gain to two features. First, an APD-Net uses neuron(filter)-wise masking on the shared

parameters, allowing it to focus only on parts relevant to the task at the current training stage. Secondly,

APD-Net updates the previous task-adaptive parameters to reflect the changes made to the shared

parameters to perform retroactive knowledge transfer. APD-Fixed, without these retroactive updates,

performs slightly worse. APD(2) outperforms APD(1) since it further allows local knowledge transfer

with hierarchically shared parameters. Moreover, our methods yield considerably higher accuracy with

lower capacity than expansion-based baselines (Figure 2.8). This efficiency comes from task-adaptive

learning performing only residual learning for each task with a minimal capacity increase while maximally

utilizing the task-shared parameters.

We further validate the efficiency of our methods in terms of training time. Existing approaches

with network expansion require excessive training time. DEN performs its training process with multiple

sequential steps, namely selective retraining, dynamic network expansion, and split/duplication, each of

which requires retraining of the network. RCL uses reinforcement learning techniques, which is inherently

slow since the agent should determine how many neurons to add at each layer in a discrete space. PGN

trains much faster, but the model increases the fixed number of neurons at each layer when a new task

arrives, resulting in overly large networks. On the contrary, although APD-Net requires updates to the

previous task-adaptive parameters, it is achieved in a single training step. Figure 2.8 shows that APD(1)

and APD(2) perform training within competitive training time to the base model.

Order fairness in continual learning We now evaluate the order-robustness of our model in

comparison to the existing approaches. We first define an evaluation metric for order-sensitivity for each
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Table 2.1: Experiment results on CIFAR-100 Split and CIFAR-100 Superclass datasets. The results

are the mean accuracies over 3 runs of experiments with random splits, performed with 5 different task order

sequences. STL is the single-task learning model that trains a separate network for each task independently.

CIFAR-100 Split CIFAR-100 Superclass

Methods Capacity Accuracy AOPD MOPD Capacity Accuracy AOPD MOPD

STL 1,000% 63.75% 0.98% 2.23% 2,000% 61.00% 2.31% 3.33%

L2T 100% 48.73% 8.62% 17.77% 100% 41.40% 8.59% 20.08%

EWC [74] 100% 53.72% 7.06% 15.37% 100% 47.78% 9.83% 16.87%

P&C [135] 100% 53.54% 6.59% 11.80% 100% 48.42% 9.05% 20.93%

PGN [130] 171% 54.90% 8.08% 14.63% 271% 50.76% 8.69% 16.80%

DEN [178] 181% 57.38% 8.33% 13.67% 191% 51.10% 5.35% 10.33%

RCL [170] 181% 55.26% 5.90% 11.50% 184% 51.99% 4.98% 14.13%

APD-Fixed 132% 59.32% 2.43% 4.03% 128% 55.75% 3.16% 6.80%

175% 61.02% 2.26% 2.87% 191% 57.98% 2.58% 4.53%

APD(1) 134% 59.93% 2.12% 3.43% 133% 56.76% 3.02% 6.20%

170% 61.30% 1.57% 2.77% 191% 58.37% 2.64% 5.47%

APD(2) 135% 60.74% 1.79% 3.43% 130% 56.81% 2.85% 5.73%

153% 61.18% 1.86% 3.13% 182% 58.53% 2.75% 5.67%
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Figure 2.8: Accuracy over the efficiency of expansion-based continual learning methods and our methods. We

report performance over capacity and performance over training time on both datasets.

task t, which we name as Order-normalized Performance Disparity (OPD), as the disparity between its

performance on R random task sequences:

OPDt = max(P
1

t , ..., P
R

t )−min(P
1

t , ..., P
R

t ) (2.10)

where P
r

t denotes the performance of task t to the task sequence r. Then we define the Maximum OPD

as MOPD = max(OPD1, ..., OPDt), and the Average OPD as AOPD = 1
T

∑T
t=1 OPDt, to evaluate

order-robustness on the entire task set. A model that is sensitive to the task sequence order will have

high MOPD and AOPD, and an order-robust model will have low values for both metrics.

In Table 2.1, we show the experimental results on order-robustness for all models, obtained on five

random sequences. We observe that expansion-based continual learning methods are more order-robust

than fixed-capacity methods, owing to their ability to introduce task-specific units. However, they still

suffer from a large degree of performance disparity due to the asymmetric direction of knowledge transfer

from earlier tasks to later ones. On the other hand, APD-Nets obtain significantly lower MOPD and

AOPD than baseline models, which have a high disparity in performance between task sequences given in
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Figure 2.9: Per-task accuracy for each task sequence of continual learning baselines and our models on

CIFAR-100 Split, on 5 task sequences of different order. Large amount of disparity among task performance

of different orders implies that the model is task-order sensitive, that is less confident in terms of fairness in

continual learning.

different orders. APD(1) and APD(2) are more order-robust than APD-Fixed, suggesting the effectiveness

of the retroactive updates of τ1:t−1. Figure 2.9 further shows how the per-task performance of each model

changes to task sequences of five different orders. We observe that our models show the least disparity in

performance to the order of the task sequence.

Preventing catastrophic forgetting We show the effectiveness of APD in preventing catastrophic

forgetting by examining how the model performance on earlier tasks changes as new tasks arrive.

Figure 2.10 (a)-(c) show the results on task 1, 6, 11 from CIFAR-100 Superclass, which has 20 tasks in

total. APD-Nets do not show any sign of catastrophic forgetting, although their performances marginally

change with the arrival of each task. Indeed, APD(2) even improves on task 6 (by 0.40%p) as it learns on

later tasks, which is possible both due to the update of the shared parameters and the retroactive update

of the task-adaptive parameters for earlier tasks, which leads to better solutions.

Selective task forgetting. To show that APD-Net can perform selective task forgetting without any

harm to the performance of non-target tasks, in Figure 2.10, (d)-(e), we report the performance change

in Task 1-5 when removing parameters for Task 3 and 5. As shown, there is no performance degeneration

on non-target tasks, which is expected since dropping out a task-adaptive parameter for a specific task

will not affect the task-adaptive parameters for the remaining tasks. This ability to selectively forget is

another important advantage of our model that makes it practical in lifelong learning scenarios.

Scalability to a large number of tasks We further validate the scalability of our model with large-

scale continual learning experiments on the Omniglot-Rotation dataset, which has 100 tasks. Regardless

of random rotations, tasks may share specific features such as circles, curves, and straight lines. [44]

showed that we could learn generic representations even with rotated images. They proposed a popular
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Figure 2.10: (a)-(c) Catastrophic Forgetting on CIFAR-100 Superclass: Performance of our models on

the 1st, 6th,and 11th task during continual learning. (d)-(e) Task Forgetting on CIFAR-100 Split: Per-task

Performance of APD(1) (T1:5) when 1st task is dropped during continual learning.

Models Capacity Accuracy AOPD MOPD

STL 10,000% 82.13% (0.08) 2.79% 5.70%

L2T 100% 63.46% (1.58) 13.35% 24.43%

1,599% 64.65% (1.76) 11.35% 27.23%

EWC 100% 67.48% (1.39) 14.92% 32.93%

1,599% 68.66% (1.92) 15.19% 40.43%

PGN 1,045% 73.65% (0.27) 6.79% 19.27%

1,543% 79.35% (0.12) 4.52% 10.37%

APD(2) 649% 81.20% (0.62) 4.09% 9.44%

943% 81.60% (0.53) 3.78% 8.19%
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Figure 2.11: Left: Performance comparison with several benchmarks on Omniglot-rotation (standard deviation

into parenthesis). Right: The number of the parameters which is obtained during course of training on Omniglot-

rotation.

self-supervised learning technique where they trained the model to predict the rotation angle of randomly

rotated images. We do not compare against DEN or RCL for this experiment since they are impractically

slow to train. Figure 2.11 Left shows the results of this experiment. For PGN, we restrict the maximum

number of links to the adapter to 3 in order to avoid establishing exponentially many connections. We

observe that continual learning models achieve significantly lower performance and higher OPDs than

single-task learning.

On the contrary, our model outperforms them by a large amount, obtaining performance almost

equal to STL, which uses 100 times more network parameters. To show that our model scales well, we plot

the number of parameters for our models as a function of the number of tasks in Figure 2.11 Right. The

plot shows that our APD-Net scales well, showing logarithmic growth in network capacity (the number

of parameters), while PGN shows linear growth. This result suggests that our model is highly efficient,

especially in large-scale continual learning scenarios.

Continual learning with heterogeneous datasets We further consider a more challenging continual

learning scenario where we train on a series of heterogeneous datasets. For this experiment, we use

CIFAR-10, CIFAR100, and the Street View House Numbers (SVHN) dataset, in two different task arrival

sequences (SVHN→CIFAR-10→CIFAR-100, CIFAR-100→CIFAR-10→SVHN). We use VGG-16 as the

base network, and compare against an additional baseline, Piggyback, which handles a newly arrived task
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Table 2.2: Accuracy comparison on diverse datasets according to two opposite task orders (arrows). The results

are the mean accuracies over 3 runs of experiments. VGG16 with batch normalization is used for a base network.

STL L2T Piggyback PGN APD(1)

Task Order None ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑
SVHN 96.8% 10.7% 88.4% 96.8% 96.4% 96.8% 96.2% 96.8% 96.8%

CIFAR10 91.3% 41.4% 35.8% 83.6% 90.8% 85.8% 87.7% 90.1% 91.0%

CIFAR100 67.2% 29.6% 12.2% 41.2% 67.2% 41.6% 67.2% 61.1% 67.2%

Average 85.1% 27.2% 45.5% 73.9% 84.8% 74.7% 83.7% 83.0% 85.0%

Model Size 171MB 57 MB 57 MB 59 MB 59 MB 64 MB 64 MB 63 MB 65 MB

Table 2.3: Ablation study results on APD(1) with average of five different orders depicted in A.1. We show the

validity of APD as compared with several architectural variants. All experiments were performed on CIFAR-100

split dataset.

Models Capacity Accuracy AOPD MOPD

STL 1,000% 63.75% 0.98% 2.23%

APD(1) 170% 61.30% 1.57% 2.77%

w/o Sparsity 1,084% 63.47% 3.20% 5.40%

w/o Adaptive Mask 168% 59.09% 1.83% 3.47%

Fixed σ 167% 58.55% 2.31% 3.53%

by learning a task-specific binary mask on a network pretrained on ImageNet; since we cannot assume

the availability of such large-scale datasets for pretraining in a general setting, we pre-train it on the

initial task. Table 2.2 shows the results, which show that existing models obtain suboptimal performance

in this setting and are order-sensitive. While Piggyback and PGN are immune to catastrophic forgetting

since they freeze the binary masks and hidden units trained on previous tasks, they still suffer from

performance degeneration since their performances largely depend upon the pretrained network and the

similarity of the later tasks to earlier ones. On the contrary, APD obtains performance close to STL

without much increase to the model size and is also order-robust.

Architectural choices for additive parameter decomposition We also evaluate various ablation

experiments on Additive Parameter Decomposition in Table 2.3. First, we build the dense APD without

sparsity-inducing constraints for task-adaptive parameters while maintaining the essential architecture

depicted as w/o Sparsity. It significantly outperforms APD in terms of accuracy but is impractical

since it requires huge network capacity. We also measure the performance of APD without adaptive

masking variables to observe the performance change when the flexibility of APD for newly arriving tasks

is limited, referred to as w/o Adaptive Masking in the table. Naturally, it underperforms with respect

to both accuracy and OPDs. Freezing σ after training the first task, referred to as Fixed σ in the table,

describes an APD variant that the task-shared knowledge is not properly captured by σ. Interestingly,

this shows significantly lower performance than the others, suggesting the importance of properly learning

task-shared knowledge for efficient continual learning.
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Figure 2.12: Visualizations of the model parameters during continual learning. The colored

markers denote the parameters for each task i, and the empty markers with black outlines denote the

task-shared parameters. Dashed arrows indicate the drift in the parameter space as the model trains on a

sequence of tasks.

Qualitative analysis

As a further qualitative analysis of the effect of APD, we visualize the parameters using our method

and baselines by projecting them onto a 2D space (Figure 2.12). For this experiment, we use a modified

MNIST-split dataset whose images are cropped in the center by 8×8 pixels and create 5 tasks, where each

task is the binary classification between two classes. As for the base network, we use a 2-layer multi-layer

perceptron with 10 units at each layer. Then we use Principle Component Analysis (PCA) to reduce the

dimensionality of the parameters to two. We visualize the 2D projections of both the task-shared and

task-adaptive parameters for each step of continual learning. For example, for task 3, we plot three green

markers which visualize the parameters when training on task 4 and 5. We only have a single marker for

the last task (Task 5) as there is no future task to solve.

We observe that the model parameters using L2-Transfer drift away in a new direction as it trains

on a sequence of tasks, which brings in catastrophic forgetting. APD-Fixed (Figure 2.12 (b)) largely

alleviates the semantic drift, as the update on later tasks only affects the task-shared parts while the

task-adaptive parameters are kept intact. However, the update to the task-shared parameters could

result in a small drift in the combined task-specific parameters. On the other hand, APD-Net with

the retroactive update of task-adaptive parameters successfully prevents the drift in the task-specific

parameters (Figure 2.12 (c)).

2.2.5 Summary

We proposed a novel continual learning model with Additive Parameter Decomposition, where the

task-shared parameters capture knowledge generic across tasks, and the task-adaptive parameters capture

incremental differences over them to capture task-specific idiosyncrasies. This knowledge decomposition

naturally solves the catastrophic forgetting problem since the task-adaptive parameters for earlier tasks

will remain intact and is significantly more efficient compared to expansion-based approaches since the

task-adaptive parameters are additive and do not increase the number of neurons or filters. Moreover, we

also introduce and tackle a novel problem we refer to as task-order sensitivity, where the performance for

each task varies sensitively to the order of task arrival sequence. With our model, the shared parameters

will stay relatively static regardless of the task order, and retroactive updates of the task-adaptive

parameters prevent them from semantic drift. With extensive experimental validation, we showed that

26



our model obtains impressive accuracy gains over the existing continual learning approaches while being

memory- and computation-efficient, scalable to a large number of tasks, and order-robust. We hope our

paper initiates new research directions for continual learning on the relatively unexplored problems of

scalability, task-order sensitivity, and selective task forgetting.
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Chapter 3. Leverage Indirect Experiences from Different

On-device Clients

3.1 Federated Continual Learning with Weighted Inter-client

Transfer [174]

3.1.1 Motivation

Continual learning [152, 80, 131, 74, 135] describes a learning scenario where a model continuously

trains on a sequence of tasks; it is inspired by the human learning process, as a person learns to perform

numerous tasks with large diversity over his/her lifespan, making use of the past knowledge to learn

about new tasks without forgetting previously learned ones. Continual learning is a long-studied topic

since having such an ability leads to the potential of building general artificial intelligence. However, there

are crucial challenges in implementing it with conventional models such as deep neural networks (DNNs),

such as catastrophic forgetting, which describes the problem where parameters or semantic representations

learned for past tasks drift to the direction of new tasks during training. Various prior works have

tackled the problem [74, 141, 127], and some recent works tackle other issues, such as scalability or

order-robustness [135, 57, 175].

However, all of these models are fundamentally limited in that they can only learn from direct

experience - they only learn from the sequence of the tasks they have trained on. Contrarily, humans can

learn from indirect experiences from others through different means (e.g., verbal communication, books,

or various media). Then wouldn’t it be beneficial to implement such an ability to a continual learning

framework, such that multiple models learning on different machines can learn from the knowledge of

the tasks that other clients have already experienced? One problem that arises here is that due to data

privacy on individual clients and exorbitant communication costs, it may not be possible to communicate

data directly between the clients or between the server and clients.

Figure 3.1: Concept. A continual learner at a hospital

who learns on a sequence of disease prediction tasks may want

to utilize relevant task parameters from other hospitals. FCL

allows such inter-client knowledge transfer via the communica-

tion of task-decomposed parameters.

Federated learning [105, 94, 179] is a

learning paradigm that tackles this issue by

communicating the parameters instead of the

raw data itself. We may have a server that

receives the parameters locally trained on

multiple clients, aggregates them into a sin-

gle model parameter, and sends it back to

the clients. Motivated by our intuition on

learning from indirect experience, we tackle

the problem of Federated Continual Learn-

ing (FCL) where we perform continual learn-

ing with multiple clients trained on private

task sequences, which communicate their task-

specific parameters via a global server. Fig-

ure 3.1 depicts an example scenario of FCL.
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Suppose that we are building a network of hospitals, each of which has a disease diagnosis model which

continuously learns to perform diagnosis given CT scans, for new types of diseases. Then, under our

framework, any diagnosis model which has learned about a new type of disease (e.g., COVID-19) will

transmit the task-specific parameters to the server, which will redistribute them to other hospitals for

the local models to utilize. This allows all participants to benefit from the new task knowledge without

compromising data privacy.

Figure 3.2: Challenge of Federated Continual

Learning. Interference from other clients, resulting from

sharing irrelevant knowledge, may hinder the optimal

training of target clients (Red), while relevant knowledge

from other clients will be beneficial for their learning

(Green).

Yet, the problem of federated continual learn-

ing also brings new challenges. First, there is not

only catastrophic forgetting from continual learn-

ing but also the threat of potential interference

from other clients. Figure 3.2 describes this chal-

lenge with the results of a simple experiment. Here,

we train a model for MNIST digit recognition while

communicating the parameters from another client

trained on a different dataset. When the knowl-

edge transferred from the other client is relevant

to the target task (SVHN), the model converges

faster and reaches higher accuracy (green line),

whereas the model underperforms the base model

if the transferred knowledge is highly different from

the target task (CIFAR-10, red line). Thus, we

need to selectively utilize knowledge from other

clients to minimize inter-client interference and maximize inter-client knowledge transfer. Another

problem with federated learning is efficient communication, as communication costs could become enor-

mous when utilizing the knowledge of the other clients since the communication cost could be the main

bottleneck in practical scenarios when working with edge devices. Thus we want the knowledge to be

represented as compactly as possible.

To tackle these challenges, we propose a novel framework for federated continual learning, Federated

Weighted Inter-client Transfer (FedWeIT), which decomposes the local model parameters into a dense

base and sparse task-adaptive parameters. Local clients participating in FedWeIT encode task-specific

knowledge into task-adaptive parameters while sharing task-generic knowledge through the base parameters.

When we utilize generic knowledge, we also want the client to transfer task-specific knowledge obtained

from other clients if it is beneficial. To this end, we allow each model to take a weighted combination of

the task-adaptive parameters broadcast from the server such that it can select task-specific knowledge

helpful for the task at hand. FedWeIT is communication-efficient since the task-adaptive parameters are

highly sparse and only need to be communicated once created. Moreover, when communication efficiency

is not a critical issue, as in cross-silo federated learning [65], we can use our framework to incentivize

each client based on the attention weights on its task-adaptive parameters. We validate our method on

multiple scenarios with varying degrees of task similarity across clients against various federated learning

and local continual learning models. The results show that our model obtains significantly superior

performance over all baselines and adapts faster to new tasks, with largely reduced communication costs.

The main contributions of this paper are as follows:

• We introduce a new problem of Federated Continual Learning (FCL), where multiple models

continuously learn on distributed clients, which poses new challenges such as the prevention of
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inter-client interference and inter-client knowledge transfer.

• We propose a novel and communication-efficient framework for federated continual learning,

which allows each client to adaptively update the federated parameter and selectively utilize the past

knowledge from other clients by communicating sparse parameters.

3.1.2 Related Work

Continual learning While continual learning [80, 131] is a long-studied topic with a vast literature, we

only discuss recent relevant works. Regularization-based: EWC [74] leverages the Fisher Information

Matrix to restrict the change of the model parameters such that the model finds the solution that is

good for both previous and the current task, and IMM [90] proposes to learn the posterior distribution

for multiple tasks as a mixture of Gaussians. Stable SGD [109] shows impressive performance gain

through controlling essential hyperparameters and gradually decreasing the learning rate each time a

new task arrives. Architecture-based: DEN [178] tackles this issue by expanding the network size

that is necessary via iterative neuron/filter pruning and splitting, and RCL [170] tackles the same

problem using reinforcement learning. APD [175] additively decomposes the parameters into shared and

task-specific parameters to minimize the increase in the network complexity. Coreset-based: GEM

variants [102, 19] minimize the loss on both of actual dataset and stored episodic memory. FRCL [153]

memorizes approximated posteriors of previous tasks with sophisticatedly constructed inducing points. To

the best of our knowledge, none of the existing approaches considered the communicability for continual

learning of deep neural networks, which we tackle. CoLLA [129] aims at solving multi-agent lifelong

learning with sparse dictionary learning, it does not have a central server to guide collaboration among

clients and is formulated by a simple dictionary learning problem, thus not applicable to modern neural

networks. Also, CoLLA is restricted to synchronous training with homogeneous clients.

Federated learning Federated learning is a distributed learning framework under differential privacy,

which aims to learn a global model on a server while aggregating the parameters learned by the clients on

their private data. FedAvg [105] aggregates the model trained across multiple clients by computing a

weighted average of them based on the number of data points trained. FedProx [94] trains the local models

with a proximal term which restricts their updates to be close to the global model. FedCurv [142] aims

to minimize the model disparity across clients during federated learning by adopting a modified version

of EWC. Recent works [179, 156] introduce well-designed aggregation policies by leveraging Bayesian

non-parametric methods. A crucial challenge of federated learning is the reduction of communication

cost. TWAFL [26] tackles this problem by performing layer-wise parameter aggregation, where shallow

layers are aggregated at every step, but deep layers are aggregated in the last few steps of a loop. [69]

suggests an algorithm for rapid convergence, which minimizes the interference among discrepant tasks

at clients by sacrificing the local optimality. This is the opposite direction from personalized federated

learning methods [36, 83, 29], which put more emphasis on the performance of local models. FCL is a

parallel research direction to both, and to the best of our knowledge, ours is the first work that considers

task-incremental learning of clients under the federated learning framework.

3.1.3 Approach

Motivated by the human learning process from indirect experiences, we introduce novel continual

learning under the federated learning setting, which we refer to as Federated Continual Learning (FCL).
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(a) Communication of General Knowledge (b) Communication of Task-adaptive Knowledge

Figure 3.3: Updates of FedWeIT. (a) A client sends sparsified federated parameter Bc⊙m
(t)
c . After that, the

server redistributes aggregated parameters to the clients. (b) The knowledge base stores previous tasks-adaptive

parameters of clients, and each client selectively utilizes them with an attention mask.

FCL assumes that multiple clients are trained on a sequence of tasks from the private data stream while

communicating the learned parameters with a global server. We first formally define the problem and

then propose naive solutions that straightforwardly combine the existing federated learning and continual

learning methods. Then, we discuss two novel challenges that are introduced by federated continual

learning and propose a novel framework, Federated Weighted Inter-client Transfer (FedWeIT) which can

effectively handle the two problems while also reducing the client-to-sever communication cost.

Problem definition

In the standard continual learning (on a single machine), the model iteratively learns from a sequence

of tasks {T (1), T (2), ..., T (T )} where T (t) is a labeled dataset of tth task, T (t) = {x(t)
i ,y

(t)
i }

Nt
i=1, which

consists of Nt pairs of instances x
(t)
i and their corresponding labels y

(t)
i . Assuming the most realistic

situation, we consider the case where the task sequence is a task stream with an unknown arriving order,

such that the model can access T (t) only at the training period of task t which becomes inaccessible

afterward. Given T (t) and the model learned so far, the learning objective at task t is as follows:

minimize
θ(t)

L(θ(t);θ(t−1), T (t)), where θ(t) is a set of the model parameters at task t.

We now extend the conventional continual learning to the federated learning setting with multiple

clients and a global server. Let us assume that we have C clients, where at each client cc ∈ {c1, . . . , cC}
trains a model on a privately accessible sequence of tasks {T (1)

c , T (2)
c , ..., T (t)

c } ⊆ T . Please note that there
is no relation among the tasks T (t)

1:C received at step t, across clients. Now the goal is to effectively train

C continual learning models on their own private task streams via communicating the model parameters

with the global server, which aggregates the parameters sent from each client, and redistributes them to

clients.

Communicable continual learning

In conventional federated learning settings, the learning is done with multiple rounds of local

learning and parameter aggregation. At each round of communication r, each client cc and the server

s perform the following two procedures: local parameter transmission and parameter aggregation &

broadcasting. In the local parameter transmission step, for a randomly selected subset of clients at round r,
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C(r) ⊆ {c1, c2, ..., cC}, each client cc ∈ C(r) sends updated parameters θ(r) to the server. The server-clients

transmission is not done at every client because some of the clients may be temporarily disconnected.

Then the server aggregates the parameters θ
(r)
c sent from the clients into a single parameter. The most

popular frameworks for this aggregation are FedAvg [105] and FedProx [94]. However, naive federated

continual learning with these two algorithms on local sequences of tasks may result in catastrophic

forgetting. One simple solution is to use a regularization-based, such as Elastic Weight Consolidation

(EWC) [74], which allows the model to obtain a solution that is optimal for both the previous and

the current tasks. There exist other advanced solutions [113, 19] that successfully prevent catastrophic

forgetting. However, the prevention of catastrophic forgetting at the client level is an orthogonal problem

from federated learning.

Thus we focus on challenges that newly arise in this federated continual learning setting. In the

federated continual learning framework, the aggregation of the parameters into a global parameter θG

allows inter-client knowledge transfer across clients, since a task T (q)
i learned at client ci at round q may

be similar or related to T (r)
j learned at client cj at round r. Yet, using a single aggregated parameter

θG may be suboptimal in achieving this goal since knowledge from irrelevant tasks may not be helpful

or even hinder the training of each client by altering its parameters into incorrect directions, which we

describe as inter-client interference. Another problem that is also practically important is communication

efficiency. The parameter transmission between the server and clients will incur high communication

costs, which will be problematic for the continual learning setting since the clients may train on unlimited

streams of tasks.

Federated weighted inter-client transfer

How can we then maximize the knowledge transfer between clients while minimizing the inter-client

interference and communication cost? We now describe our model, Federated Weighted Inter-client

Transfer (FedWeIT), which can resolve these two problems that arise with a naive combination of continual

learning approaches with the federated learning framework.

As briefly alluded to earlier, the main cause of the problems is that the knowledge of all tasks learned

at multiple clients is stored in a single set of parameters θG. However, for the knowledge transfer to be

effective, each client should selectively utilize only the knowledge of the relevant tasks that other clients

train. This selective transfer is also the key to minimizing inter-client interference and disregarding the

knowledge of irrelevant tasks that may interfere with learning.

We tackle this problem by decomposing the parameters into three different types of parameters with

different roles: global parameters (θG) that capture the global and generic knowledge across all clients,

local base parameters (B) which capture generic knowledge for each client, and task-adaptive parameters

(A) for each specific task per client, motivated by [175]. A set of the model parameters θ
(t)
c for task t at

continual learning client cc is then defined as follows:

θ(t)
c = B(t)

c ⊙m(t)
c +A(t)

c +
∑
i∈Cnc

∑
j<|t|

α
(t)
i,jA

(j)
i (3.1)

where B
(t)
c ∈ {RIl×Ol}Ll=1 is the set of base parameters for cth client shared across all tasks in the client,

m
(t)
c ∈ {ROl}Ll=1 is the set of sparse vector masks which allows to adaptively transform B

(t)
c for the task

t, A
(t)
c ∈ {RIl×Ol}Ll=1 is the set of sparse task-adaptive parameters at client cc. Here, L is the number of

the layer in the neural network, and Il, Ol are the input and output dimensions of the weights at layer l,

respectively.

32



The first term allows selective utilization of global knowledge. We want the base parameter B
(t)
c at

each client to capture generic knowledge across all tasks across all clients.

As illustrated in Figure 3.3 (a), we initialize the base parameter at each round t with the global

parameter from the previous iteration (θ
(t−1)
G ) allowing B

(t)
c to also benefit from global knowledge about

all the tasks. However, since θ
(t−1)
G also contains knowledge irrelevant to the current task, we learn that

the sparse mask selects only the relevant parameters for the given task instead of using it as is. This

weighted selection helps minimize inter-client interference and also allows for efficient communication.

The second term indicates task-adaptive parameters. Since we additively decompose the parameters, A
(t)
c

aims to capture relevant knowledge to task T (t)
c , which is not captured from the first term. The final term

describes weighted inter-client knowledge transfer. We have a set of parameters transmitted from the

server, containing all task-adaptive parameters from all the clients. To selectively utilize these indirect

experiences from other clients, we further allocate attention α
(t)
c to these parameters to take a weighted

combination of them. By learning this attention, each client can select only the relevant task-adaptive

parameters that help learn the given task. Although we design A
(j)
i to be highly sparse, using about

2− 3% of memory of full parameter in practice, sending all task knowledge is not desirable. Thus we

transmit the randomly sampled task-adaptive parameters across all time steps from the knowledge base,

which we empirically find to achieve good results in practice.

Training of local clients We learn the decomposable parameter θ
(t)
c by optimizing for the following

objective:

minimize
B

(t)
c , m

(t)
c , A

(1:t)
c , α

(t)
c

L
(
θ(t)
c ; T (t)

c

)
+ λ1Ω({m(t)

c ,A(1:t)
c })

+λ2

t−1∑
i=1

∥∆B(t)
c ⊙m(i)

c +∆A(i)
c ∥22,

(3.2)

where L is a loss function and Ω(·) is a sparsity-inducing regularization term for all task-adaptive

parameters and the masking variable (we use ℓ1-norm regularization) to make them sparse. The second

regularization term is used for the retroactive update of the past task-adaptive parameters, which helps

the task-adaptive parameters to maintain the original solutions for the target tasks by reflecting the

change of the base parameter. Here, ∆B
(t)
c = B

(t)
c −B

(t−1)
c is the difference between the base parameter

at the current and previous timestep, and ∆A
(i)
c is the difference between the task-adaptive parameter for

task i at the current and previous timestep. This regularization is essential for preventing catastrophic

forgetting. λ1 and λ2 are hyperparameters controlling the effect of the two regularizers.

Efficient communication via sparse parameters FedWeIT learns via server-to-client communication.

As discussed earlier, a crucial challenge here is to reduce communication costs. We describe what happens

at the client and the server at each step.

Client: At each round r, each client cc partially updates its base parameter with the nonzero

components of the global parameter sent from the server; that is, Bc(n) = θG(n) where n is a nonzero

element of the global parameter. After training the model using Equation 3.2, it obtains a sparsified base

parameter B̂
(t)
c = B

(t)
c ⊙m

(t)
c and task-adaptive parameter A

(t)
c for the new task, both of which are sent

to the server, at the smaller cost compared to naive FCL baselines. While naive FCL baselines require

|C| ×R× |θ| for client-to-server communication, FedWeIT requires |C| × (R× |B̂|+ |A|) where R is the

number of communication round per task and | · | is the number of parameters.
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Algorithm 6 Federated Weighted Inter-client Transfer

input Dataset {D(1:t)
c }Cc=1, global parameter θG, hyperparameters λ1, λ2, knowledge base kb← {}

output {Bc, m
(1:t)
c , α

(1:t)
c , A

(1:t)
c }Cc=1

1: Initialize Bc to θG for all clients C ≡ {c1, ..., cC}
2: for task t = 1, 2, ... do

3: Randomly sample knowledge base kb(t) ∼ kb

4: for round r = 1, 2, ... do

5: Collect communicable clients C(r) ∼ C
6: Distribute θG and kb(t) to client cc ∈ C(r) if cc meets kb(t) first, otherwise distribute only θG

7: Minimize Equation 3.2 for solving local CL problems

8: B
(t,r)
c ⊙m

(t,r)
c are transmitted from C(r) to the server

9: Update θG ← 1

|C(r)|

∑
c B

(t,r)
c ⊙m

(t,r)
c

10: end for

11: Update knowledge base kb← kb ∪ {A(t)
j }j∈C

12: end for

Server: The server first aggregates the base parameters sent from all the clients by taking a weighted

average of them: θG = 1
C
∑

C B̂
(t)
i . Then, it broadcasts θG to all the clients. Task adaptive parameters of

t − 1, {A(t−1)
i }Cnc

i=1 are broadcast at once per client during training task t. While naive FCL baselines

requires |C|×R×|θ| for server-to-client communication cost, FedWeIT requires |C|×(R×|θG|+(|C|−1)×|A|)
in which θG, A are highly sparse. We describe the FedWeIT algorithm in Algorithm 6.

Figure 3.4: Configuration of task sequences: We first split a dataset D into multiple sub-tasks in non-IID

manner ((a) and (b)). Then, we distribute them to multiple clients (C#). Mixed tasks from multiple datasets

(colored circles) are distributed across all clients ((c)).

3.1.4 Experimental Results

We use a modified version of LeNet [85] for the experiments with both Overlapped-CIFAR-100

and NonIID-50 datasets. Further, we use ResNet-18 [55] with NonIID-50 dataset. We followed other

experimental setups from [137] and [175].

Baselines and our model

STL: Single Task Learning at each arriving task.

EWC: Individual continual learning with EWC [74] per client.

Stable-SGD: Individual continual learning with Stable-SGD [109] per client.

APD: Individual continual learning with APD [175] per client.

FedProx: Federated continual learning using FedProx [94] algorithm.

Scaffold: Federated continual learning using Scaffold [69] algorithm.

34



FedCurv: Federated continual learning using FedCurv [142] algorithm.

FedProx-[model ]: FCL, that is trained using FedProx algorithm with [model ].

FedWeIT: Our FedWeIT algorithm.

Datasets

We validate our FedWeIT under different configurations of task sequences against baselines which are

namely Overlapped-CIFAR-100 and NonIID-50.

Overlapped-CIFAR-100: We group 100 classes of CIFAR-100 dataset into 20 non-iid superclasses

tasks. Then, we randomly sample 10 tasks out of 20 tasks and split instances to create a task sequence

for each of the clients with overlapping tasks.

NonIID-50: We use the following eight benchmark datasets: MNIST [85], CIFAR-10/-100 [77],

SVHN [110], Fashion-MNIST [165], Not-MNIST [14], FaceScrub [112], and TrafficSigns [150].

We split the classes in the 8 datasets into 50 non-IID tasks, each of which is composed of 5 classes that

are disjoint from the classes used for the other tasks. This is a large-scale experiment containing 280, 000

images of 293 classes from 8 heterogeneous datasets. After generating and processing tasks, we randomly

distribute them to multiple clients as illustrated in Figure 3.4. We followed metrics for accuracy and

forgetting from recent works [18, 109, 108].

Quantitative analysis

We first validate our model on both Overlapped-CIFAR-100 and NonIID-50 task sequences against

single task learning (STL), continual learning (EWC, APD), federated learning (FedProx, Scaffold,

FedCurv), and naive federated continual learning (FedProx-based) baselines. Table 3.1 shows the final

average per-task performance after the completion of (federated) continual learning on both datasets. We

observe that FedProx-based federated continual learning (FCL) approaches degenerate the performance

of continual learning (CL) methods over the same methods without federated learning. This is because

the aggregation of all client parameters learned on irrelevant tasks results in severe interference in the

learning for each task, leading to catastrophic forgetting and suboptimal task adaptation. Scaffold

performs poorly on FCL, as its regularization on the local gradients is harmful to FCL, where all clients

learn from different task sequences. While FedCurv reduces the inter-task disparity in parameters, it

cannot minimize inter-task interference, resulting in underperforming single-machine CL methods. On

the other hand, FedWeIT significantly outperforms single-machine CL and naive FCL baselines on both

datasets. Even with a larger number of clients (C = 100), FedWeIT consistently outperforms all baselines

(Figure 3.5). This improvement largely owes to FedWeIT’s ability to selectively utilize the knowledge

from other clients to rapidly adapt to the target task and obtain better final performance.

The fast adaptation to a new task is another clear advantage of inter-client knowledge transfer. To

further demonstrate the practicality of our method with larger networks, we experiment on Non-IID

dataset with ResNet-18 (Table 3.3), on which FedWeIT still significantly outperforms the strongest

baseline (FedProx-APD) while using fewer parameters.

Efficiency of FedWeIT We also report the accuracy as a function of network capacity in Tables 3.1

to 3.3, which we measure by the number of parameters used. We observe that FedWeIT obtains much

higher accuracy while utilizing less number of parameters than FedProx-APD. This efficiency mainly
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Table 3.1: Averaged Per-task performance on both datasets during FCL with 5 clients (fraction=1.0). We

measured task accuracy and model size after completing all learning phases over 3 individual trials. We also

measured C2S/S2C communication cost for training each task.

NonIID-50 Dataset (F=1.0, R=20)

Methods FCL Accuracy Forgetting Model Size Client to Server Cost Server to Client Cost

EWC [74] × 74.24 (± 0.11) 0.10 (± 0.01) 61 MB N/A N/A

Stable SGD [109] × 76.22 (± 0.26) 0.14 (± 0.01) 61 MB N/A N/A

APD [175] × 81.42 (± 0.89) 0.02 (± 0.01) 90 MB N/A N/A

FedProx [94] ✓ 68.03 (± 2.14) 0.17 (± 0.01) 61 MB 1.22 GB 1.22 GB

Scaffold [69] ✓ 30.84 (± 1.41) 0.11 (± 0.02) 61 MB 2.44 GB 2.44 GB

FedCurv [142] ✓ 72.39 (± 0.32) 0.13 (± 0.02) 61 MB 1.22 GB 1.22 GB

FedProx-EWC ✓ 68.27 (± 0.72) 0.12 (± 0.01) 61 MB 1.22 GB 1.22 GB

FedProx-Stable-SGD ✓ 75.02 (± 1.44) 0.12 (± 0.01) 79 MB 1.22 GB 1.22 GB

FedProx-APD ✓ 81.20 (± 1.52) 0.01 (± 0.01) 79 MB 1.22 GB 1.22 GB

FedWeIT (Ours) ✓ 84.11 (± 0.27) 0.00 (± 0.00) 78 MB 0.37 GB 1.08 GB

Single Task Learning × 85.78 (± 0.17) − 610 MB N/A N/A

Overlapped CIFAR-100 Dataset (F=1.0, R=20)

Methods FCL Accuracy Forgetting Model Size Client to Server Cost Server to Client Cost

EWC [74] × 44.26 (± 0.53) 0.13 (± 0.01) 61 MB N/A N/A

Stable SGD [109] × 43.31 (± 0.44) 0.08 (± 0.01) 61 MB N/A N/A

APD [175] × 50.82 (± 0.41) 0.02 (± 0.01) 73 MB N/A N/A

FedProx [94] ✓ 38.96 (± 0.37) 0.13 (± 0.02) 61 MB 1.22 GB 1.22 GB

Scaffold [69] ✓ 22.80 (± 0.47) 0.09 (± 0.01) 61 MB 2.44 GB 2.44 GB

FedCurv [142] ✓ 40.36 (± 0.44) 0.15 (± 0.02) 61 MB 1.22 GB 1.22 GB

FedProx-EWC ✓ 41.53 (± 0.39) 0.13 (± 0.01) 61 MB 1.22 GB 1.22 GB

FedProx-Stable-SGD ✓ 43.29 (± 1.45) 0.07 (± 0.01) 61 MB 1.22 GB 1.22 GB

FedProx-APD ✓ 52.20 (± 0.50) 0.02 (± 0.01) 75 MB 1.22 GB 1.22 GB

FedWeIT (Ours) ✓ 55.16 (± 0.19) 0.01 (± 0.00) 75 MB 0.37 GB 1.07 GB

Single Task Learning × 57.15 (± 0.07) − 610 MB N/A N/A

comes from reusing task-adaptive parameters from other clients, which is impossible with single-machine

CL or naive FCL methods.

We also examine the communication cost (the size of non-zero parameters transmitted) of each

method. Table 3.1 reports both the client-to-server (C2S) / server-to-client (S2C) communication cost

at training each task. FedWeIT uses only 30% and 3% of parameters for B̂ and A of the dense models,

respectively. We observe that FedWeIT is significantly more communication-efficient than FCL baselines,

although it broadcasts task-adaptive parameters due to the high sparsity of the parameters. Figure 3.7

shows the accuracy as a function of C2S cost according to the transmission of top-κ% informative

parameters. Since FedWeIT selectively utilizes task-specific parameters learned from other clients, it

results in superior performance over APD baselines, especially with sparse communication of model

parameters.

Catastrophic forgetting Further, we examine how the performance of the past tasks changes during

continual learning, to see the severity of catastrophic forgetting with each method. Figure 3.6 shows the

performance of FedWeIT and FCL baselines on all tasks at the end of training for later tasks. We observe

that naive FCL baselines suffer from more severe catastrophic forgetting than local continual learning

with EWC because of inter-client interference, where the knowledge of irrelevant tasks from other clients

overwrites the knowledge of the past tasks. Contrarily, our model shows no sign of catastrophic forgetting.
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Table 3.2: Average Per-task Performance on

Overlapped-CIFAR-100 during FCL with 100 clients.

100 clients (F=0.05, R=20, 1,000 tasks in total)

Methods Accuracy Forgetting Model Size

FedProx 24.11 (± 0.44) 0.14 (± 0.01) 1.22 GB

FedCurv 29.11 (± 0.20) 0.09 (± 0.02) 1.22 GB

FedProx-SSGD 22.29 (± 0.51) 0.14 (± 0.01) 1.22 GB

FedProx-APD 32.55 (± 0.29) 0.02 (± 0.01) 6.97 GB

FedWeIT (Ours) 39.58 (± 0.27) 0.01 (± 0.00) 4.03 GB

STL 32.96 (± 0.23) − 12.20 GB

Table 3.3: FCL results on NonIID-50 dataset with

ResNet-18.

ResNet-18 (F=1.0, R=20)

Methods Accuracy Forgetting Model Size

APD 92.44 (± 0.17) 0.02 (± 0.00) 1.86 GB

FedProx-APD 92.89 (± 0.22) 0.02 (± 0.01) 2.05 GB

FedWeIT (Ours) 94.86 (± 0.13) 0.00 (± 0.00) 1.84 GB

(a) Federated continual learning with 20 clients

(b) Federated continual learning with 100 clients

Figure 3.5: Task adaptation comparison with FedWeIT and APD using 20 clients and 100 clients.

We visualize the last 5 tasks out of 10 tasks per client. Overlapped-CIFAR-100 datasets are used after splitting

instances according to the number of clients (20 and 100).

This is mainly due to the selective utilization of the prior knowledge learned from other clients through

the global/task-adaptive parameters, which allows it to effectively alleviate inter-client interference.

FedProx-APD also does not suffer from catastrophic forgetting but yields inferior performance due to

ineffective knowledge transfer.

Weighted inter-client knowledge transfer By analyzing the attention α in Equation 3.1, we

examine which task parameters from other clients each client selected. Figure 3.8 shows examples of

the attention weights learned for the 0th split of MNIST and the 10th split of CIFAR-100. We observe

that strong attention is allocated to the task parameters from the same (CIFAR-100 utilizes parameters

from CIFAR-100 tasks with disjoint classes) or similar datasets (MNIST utilizes parameters from Traffic

Sign and SVHN). As shown, FedWeIT effectively selects beneficial parameters to maximize inter-client

knowledge transfer, and this is impressive since it does not know which datasets the parameters are

trained on.

Asynchronous federated continual learning We now consider FedWeIT under the asynchronous

federated continual learning scenario, where there is no synchronization across clients for each task. This

is a more realistic scenario since each task may require different training rounds to converge during

federated continual learning. Here, asynchronous implies that each task requires different training costs

(i.e., time, epochs, or rounds). Under the asynchronous federated learning scenario, FedWeIT transfers
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Figure 3.6: Forgetting Analysis Performance change over the increasing number of tasks for all tasks except

the last task (1st to 9th) during federated continual learning on NonIID-50. We observe that our method does not

suffer from task forgetting any tasks.

any available task-adaptive parameters from the knowledge base to each client. We plot the average

test accuracy in Figure 3.9 over all tasks during synchronous/asynchronous federated continual learning.

In asynchronous FedWeIT, each task requires different training rounds and receives new tasks and

task-adaptive parameters in an asynchronous manner. The performance of asynchronous FedWeIT is

almost similar to that of synchronous FedWeIT.

Effect of the communication frequency We analyze the effect of the communication frequency

by comparing the performance, measured by the number of training epochs per communication round.

We run the 4 different FedWeIT with 1, 2, 5,, and 20 training epochs per round. Figure 3.10 shows

the performance of our FedWeIT variants. As clients frequently update the model parameters through

communication with the central server, the model gets higher performance while maintaining a smaller

network capacity since the model with frequent communication efficiently updates the model parameters

Figure 3.7: Accuracy over client-to-server cost.

We report the relative communication cost to the origi-

nal network. All results are averaged over the 5 clients.
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Figure 3.9: FedWeIT with asynchronous federated continual learning on Non-iid 50 dataset. We

measure the test accuracy of all tasks per client.

Overlapped-CIFAR-100

Methods Accuracy Model Size C2S/S2C Cost
Epochs

/ Round

FedWeIT 55.16 ± 0.19 0.075 GB 0.37 / 1.07 GB 1

FedWeIT 55.18 ± 0.08 0.077 GB 0.19 / 0.53 GB 2

FedWeIT 53.73 ± 0.44 0.083 GB 0.08 / 0.22 GB 5

FedWeIT 53.22 ± 0.14 0.088 GB 0.02 / 0.07 GB 20

Figure 3.10: Number of Epochs per Round We show error bars over the number of training epochs per

communication rounds on Overlapped-CIFAR-100 with 5 clients. All models transmit full of local base parameters

and highly sparse task-adaptive parameters. All results are the mean accuracy over 5 clients and we run 3

individual trials. Red arrows at each point describes the standard deviation of the performance.

by transferring the inter-client knowledge. However, it requires much higher communication costs than

the model with sparser communication. For example, the model trained for one epoch at each round

may require about 16.9 times higher entire communication cost than the model trained for 20 epochs at

each round. Hence, there is a trade-off between the model performance of federated continual learning

and communication efficiency, whereas FedWeIT variants consistently outperform (federated) continual

learning baselines.

Ablation study with model components We perform an ablation study to analyze the role of

each component of our FedWeIT. We compare the performance of four different variations of our model.

w/o B communication describes the model that does not transfer the base parameter B and only

Table 3.4: Ablation studies to analyze the effective-

ness of parameter decomposition on WeIT. All experi-

ments were performed on NonIID-50 dataset.

NonIID-50

Methods Acc. M Size C2S/S2C Cost

FedWeIT 84.11% 0.078 GB 0.37 / 1.07 GB

w/o B comm. 77.88% 0.070 GB 0.01 / 0.01 GB

w/o A comm. 79.21% 0.079 GB 0.37 / 1.04 GB

w/o A 65.66% 0.061 GB 0.37 / 1.04 GB

w/o m 78.71% 0.087 GB 1.23 / 1.25 GB

Table 3.5: Ablation Study on Knowledge Transfer

(NonIID-50).

Method Avg. Accuracy Memory size BwT

FedWeIT 84.43% (± 0.50) 68.93 MB -0.0014

FedWeIT w/o ℓ1 87.12% (± 0.24) 354.41 MB -0.0007

FedWeIT w/o ℓ2 56.76% (± 0.84) 63.44 MB -0.3203

39



communicates task-adaptive ones. w/o A communication is the model that does not communicate

task-adaptive parameters. w/o A is the model which trains the model only with sparse transmission of

local base parameter, and w/o m is the model without the sparse vector mask.

As shown in Table 3.4, without communicating B or A, the model yields significantly lower

performance compared to the full model since they do not benefit from inter-client knowledge transfer.

The model w/o A obtains very low performance due to catastrophic forgetting, and the model w/o

sparse mask m achieves lower accuracy with larger capacity and cost, which demonstrates the importance

of performing selective transmission. We also perform the additional analysis by eliminating the proposed

regularization terms in Table 3.5. Without ℓ1 term, the method achieves even better performance but

requires significantly larger memory. On the other hand, the method removing ℓ2 term suffers from

forgetting.

3.1.5 Summary

We tackled a novel problem of federated continual learning, which continuously learns local models at

each client while allowing it to utilize indirect experience (task knowledge) from other clients. This poses

new challenges, such as inter-client knowledge transfer and prevention of inter-client interference between

irrelevant tasks. To tackle these challenges, we additively decomposed the model parameters for each client

into the global parameters shared across all clients and the sparse local task-adaptive parameters specific

to each task. Further, we allowed each model to selectively update the global task-shared parameters and

utilize beneficial task-adaptive parameters from other clients. The experimental validation of our model

under various task similarities across clients against existing federated learning and continual learning

baselines shows that our model obtains significantly outperforms baselines with reduced communication

cost. We believe that federated continual learning is a practically important topic of large interest to

both research communities of continual learning and federated learning that will lead to new research

directions.
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3.2 Bitwidth Heterogeneous Federated Learning with Progres-

sive Weight Dequantization [177]

3.2.1 Motivation

In recent decades, the drastic evolution of hardware technologies for edge devices has changed

our lives from the root. Intelligent edge devices, which have the ability to process sensory inputs and

communicate, such as embedded sensors, drones, phones, smartwatches, and augmented reality glasses,

are now being used in our everyday lives. Such accessibility of edge devices has led to the emergence of

Federated Learning (FL) [105, 187, 26], a learning framework in which multiple clients collaboratively train

on private local data while periodically communicating the trained models across them, often through

a server that aggregates and broadcasts the local models. Many previous works have investigated the

potential and applicability of FL in various learning frameworks, such as semi-supervised learning [61],

graph neural networks [106, 162, 6], meta-learning [63, 36], and continual learning [174].

A crucial challenge in FL is that there could be a large discrepancy among participants in their

data distribution, tasks, model architectures, and devices which often leads to incompatibility of the

models that are being aggregated. This problem is often referred to as Heterogeneous Federated

Learning [62, 99, 52, 31] problem. Many existing works have successfully alleviated the adverse effect of

data-, model-, and device-heterogeneity. However, the most basic assumption, even in such heterogeneous

FL scenarios, is that all models have the same bitwidths.

Yet, in real-world FL scenarios, participating devices may have heterogeneous bitwidth specifications.

Suppose that we are building a federated network of various healthcare providers, such as hospitals,

community health centers, and clinics, as well as end-users, and even wearable devices, i.e., smartwatches.

Each client has a health disorder prediction model for the users themselves or their patients that

continuously learns to perform a diagnosis given the heart rates or bioelectric signals. The scenario allows

the participation of local clients with various hardware infrastructures, some of them using models built

under lightweight devices based on low-bitwidth hardware operations using FPGA, ASIC, Raspberry Pi,

or Edge GPUs. Here, BHFL enables local devices with different hardware specifications to participate in

a single federated learning framework without the need for uniformity of the infrastructure, enhancing

the pool of devices that could participate in collaborative learning. We refer to this practical FL scenario

as Bitwidth Heterogeneous Federated Learning (BHFL), which we illustrate in Figure 3.11.

Tackling BHFL is a nontrivial problem, as it poses new challenges such as (i) suboptimal loss

convergence due to distributional shift after aggregating the weights of bitwidth-heterogeneous models

and (ii) inherent limitation of expressive power in low-bitwidth weights. As shown in Table 3.6, existing

Table 3.6: Categorization of existing methods for bitwidth heterogeneous federated learning.

Methods FL Type BitsServer BitsClients BitsUplink BitsDownlink Communication

FedAvg [105] FL Float32 Float32 Float32 Float32 Weights

FedProx [94] FL Float32 Float32 Float32 Float32 Weights

FedPAQ [126] QPC1 Float32 Float32 Target bits Float32 QTarget bits(Diffs)2

FedCOM [49] QPC Float32 Float32 Target bits Float32 QTarget bits(Diffs)

FedCOMGATE [49] QPC Float32 Float32 Target bits Float32×2 QTarget bits(Diffs)

ProWD (Ours) BHFL Float32 Client-specific Client-specific Client-specific WQ
3

1 Quantized Parameter Communication (QPC) 2 QTarget bits(w): A function quantizes input w to the target bitwidth
3 Weights obtained from clients’ bit-dependent training
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Figure 3.11: Bitwidth Heterogeneous Federated Learning. We consider the FL setting where the

participating devices have heterogeneous bitwidths. FL with different bitwidth models may cause detrimental side

effects due to (i) the distributional shift of model weights, and (ii) the limited expressiveness in low-bit weights.

methods cannot appropriately handle the new setting due to these challenges. While a line of works

proposes quantizing model weights to reduce the communication cost when transmitting them to the

server, they assume that full-precision weights are being used at the local devices. However, processing

full-precision weights may not be possible for resource-limited hardware devices.

In this paper, we propose a novel framework that can successfully deal with the new challenges posed

by the BHFL problem, which we name Progressive Weight Dequantization (ProWD). The ProWD

framework enhances the compatibility across bit-heterogeneous weights with selective weight aggregation

and dequantization. The selective weight aggregation discards outliers from the low-precision weights,

and the trainable dequantizer at the server recovers high-precision weight information from the given

low-bitwidth weights. These two methods collaboratively alleviate the information loss resulting from

aggregating incompatible weights with heterogeneous bitwidths.

We evaluate the performance of our ProWD on various benchmark datasets and show that our

method significantly outperforms previous FL methods that consider weight quantization while also

outperforming naive heuristics to tackle the bitwidth heterogeneity, such as group averaging. We also

provide comprehensive analyses which show that existing FL methods suffer from poor convergence and

adaptation under the bit-heterogeneous federated learning scenario, while ProWD consistently increases

the performance of all local models regardless of their bitwidths.

In summary, our contributions are threefold:

• We define a practical federated learning scenario where the participating devices may have largely

different bitwidths, which brings in new challenges such as degenerating distributional shifts of

federated weights and limited expressive power of low-bitwidth models.

• We propose ProWD, a novel framework that effectively tackles the bitwidth heterogeneous FL problem

by selectively aggregating the weights and hierarchically dequantizing the weights prior to aggregation.

• We demonstrate the efficacy of our ProWD framework by validating it on diverse compositions of

bitwidth specifications in local clients against recent FL methods as well as naive remedies.
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3.2.2 Related Work

Quantization for federated learning While no existing work considers the problem of federated

learning across devices with different innate bitwidths, several works propose to quantize weights or

gradients to reduce the communication cost, often referred to as Quantized Parameter Communication

(QPC). FedPAQ [126] proposed to send the quantized changes of the weights at each client, instead of

the full weights. FedCOMGATE [49] extends this idea by adopting a global learning rate and guiding the

update direction to stay close to each other with an accumulated correction vector, to further address

data heterogeneity. While we empirically observed that QPC approaches alleviate the performance

degeneration of the high-bitwidth models under the BHFL scenario since they do not drastically change

the weights as simple averaging does, they are suboptimal since they do not explicitly tackle the challenges

posed by the BHFL problem.

Low-bitwidth training Low-bitwidth training is an approach to train a model using only low-bitwidth

operations and data types at training time, which enables on-device learning with lightweight edge

devices. BNN [56] and XNOR-Net [124] are approaches to accelerate the training of the convolutional

neural networks using binary operations in the forward pass with binarized weights and activations, with

floating-point operations to compute gradients in the backward pass. Except for that, diverse approaches

have been proposed that focus on using 8-bit floating point numbers for the weights, activations, and

gradients [190], devising ternary gradients to reduce communication cost (yet, it allows float32 operation

for accumulating the gradients) [161], training without floating-point operations [163], adopting direction-

sensitive gradient clipping [191], training for mixed-bitwidth models [185, 186, 151]. Most existing neural

quantization approaches quantize only the weights or the gradients while preserving parts of the network

that has a large impact on the performance, such as activations, in full-precision, and thus are not

applicable to training on devices with limited bitwidths.

Neural dequantization The dequantization of low-bitwidth signals into high-bitwidth signals has been

studied for diverse applications. For image reconstruction, [168] aims to recover the resolution of quantized

sRGB images to full-dynamic-range RAW image data via an invertible dequantizer function. In generative

flow models, [114] dequantizes the discrete-valued data by adding a uniform noise to guarantee that the

data is able to have any value in the continuous domain. Dequantizatoin is also used for the process

of converting the low-bit representation of the weights to high-bit without changing their values [43],

or to decode the encoded vectors using a codebook [87]. In this paper, we refer to “dequantization” to

describe the process of recovering the original high-bitwidth weights from the low-bitwidth quantized

weights received from local clients so that a server can utilize the high-performing recovered models for

aggregation during FL. To our knowledge, our work is the first work that provides an appropriate method

adopting the weight dequantization approach for solving practical FL scenarios.

3.2.3 Approach

We now introduce the problem setup for standard federated learning and extends it to the Bitwidth

Heterogeneous Federated Learning (BHFL) scenario, where a subset of the participating devices train the

local models with low-bitwidth operations according to their hardware specifications. We then describe

the quantized computational flow for the training of low-bitwidth clients.
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Problem statements

Federated learning In a standard Federated Learning (FL) scenario [105, 26], each client trains

the local model on the private data and periodically transmits the model parameters to the central

server, where the models are aggregated and broadcasted back to the clients. Let N different clients

C = {c1, ..., cN} participate in an FL system. Given training samples xn and its corresponding labels

yn, we suppose that a client cn solves a local optimization problem Ln = CE(f(xn;wn);yn), where

CE is a cross-entropy loss and f(·;wn) is a neural network of client cn parameterized by wn. At each

communication round r, clients C(r) ⊆ C send the model parameters to the central server, and the server

aggregates received weights, for example, by averaging their weights.
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Figure 3.12: Skewed weight distribution after

the aggregation of mixed bitwidth weights. The

distribution of the last layer’s weights of the full-precision

and low-bitwidth models at the initial, after 50, and 400

aggregation rounds.

Bitwidth heterogeneous federated learning

The majority of existing FL methods assume full-

precision operations for local clients, even when

considering device heterogeneity. However, the

participating devices have largely heterogeneous

bitwidths according to their hardware specifica-

tions. To this end, we introduce a practical FL

scenario, named Bitwidth Heterogeneous Federated

Learning (BHFL), in which we relax the strong

assumption that all clients are capable of full-

precision floating-point operations. We represent

n-th local client as a tuple of the model weights wn

and the corresponding hardware bitwidth informa-

tion sn ∈ S, where S is a set of available bitwidth

specifications for local hardware devices. Then, the

set of N clients, C can be represented as follows:

C = {(w1, s1), . . . , (wN , sN )}. At each round of

communication, a central server receives client tu-

ples and aggregates model parameters which might

be quantized in various levels depending on hardware specifications. We assume that the server allows

the full-precision computation, which redistributes w
(r)
G to all clients after quantizing the aggregated

weights according to the hardware specifications for each client; that is, w
(r+1)
n ← Q(w

(r)
G , sn),∀n.

In BHFL, what aggregation method we use could strongly impact the overall performance of the

model being learned. A simple averaging technique to aggregate local clients’ model parameters hinders

convergence. This is because the model falls into a suboptimal local minimum due to the incompatibility

across the model weights with heterogeneous bitwidths due to large discrepancies in their distributions.

The detrimental effect is more severe for larger bitwidth models, as aggregating the low-bitwidth model

weights will result in the loss of expressiveness in the model. In Figure 3.12, we observe that the

distribution of the full-precision weights quickly degenerates into three peaks that correspond to the

ternary quantization values of the low-bitwidth models.
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Local computation for limited bitwidth clients

We assume that the local clients are edge devices that perform limited bitwidth computations

according to their hardware specifications. Float32 clients perform regular full-precision training, but

quantized clients, such as Int6, Int8, and Int16, perform training using low-precision integer operations,

following [163]. Let ql and al be s-bit quantized weights and activations at layer l for a client, respectively.

We denote the convolution operator as ∗. Since convolution involves multiplication between the weights

and the activations, naively computing ql ∗ al−1 requires the hardware to support fast multiplication of

two s-bit integers. To relax this requirement, we ternarize the quantized weights before the convolution

operation:

al = ReLU
(
Qs

(
QInt2

(
ql
)
∗ al−1/αl

))
. (3.3)

Thus, Equation 3.3 only needs s-bit addition and subtraction operations for training and inference, and

the intermediate results can be stored in (s+ 1)-bits while achieving a good tradeoff between precision

and computation [92]. To prevent the activations from clipping out of range, we rescale the activations

with a pre-defined layerwise scalar coefficient αl so that they are within the range for s-bit integers. This

rescaling can be implemented efficiently with a hardware bit-shift operation. After a few local training

steps, limited-bitwidth clients broadcast original low-bitwidth weights q or the ternarized weights QInt2 (q)

to the server, like other QPC methods [126, 49].

Low-bitwidth training for bit-limited hardware devices

Weight initialization In order to prevent weights from vanishing due to the intermediate ternarization,

we adjust the scale of the initialization as follows:

wq ∼ U(−L,L), (3.4)

where L = max{0.75,
√

3/fan inl}. Note that when L =
√

3/fan inl, it is equivalent to the Kaiming

uniform initialization. The layer-wise scaling factor αl is defined as follows:

αl = Shift(0.75/
√
3/fan inl). (3.5)

This modified initialization strategy has consequences for the full-precision model since the scale of

the weights aggregated is not the same across bitwidths. We alleviate this problem by initializing the

full-precision model weights with the same distribution as the quantized model weights and using Weight

Normalization [133] in the full-precision clients to compensate for the scale difference.

Backward pass The errors are calculated by using the chain rule, except we normalize the errors at

each layer to prevent saturation. Specifically, we apply the following before propagating the error value

to every subsequent layer in the chain rule:

eq = Qs(e/Shift(max{|e|})), (3.6)

where Shift(x) = 2⌈log2 x⌋ finds the nearest power-of-two to the input, and max{|e|}) represents the

layer-wise maximum absolute value among the elements of the error e, and s is the bitwidth of the client.
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The quantizer function is defined as

Qs(x) := clips(⌈(2s−1 · x)⌋/2s−1), (3.7)

clips(x) := max(min(x, (2s−1 − 1)/2s−1), (−2s−1 + 1)/2s−1). (3.8)

For the weight update, we similarly apply the following rescaling operation to the gradient value

before applying the weight update:

q ← clips(q −Qstoch
s (η · g/Shift (max{|g|}))), (3.9)

where Qstoch
sn (·) is a stochastic quantization function defined elementwise as follows:

Qstoch
s (x) =

21−s · ⌈|x|⌉ w.p. |x| − ⌊|x|⌋

21−s · ⌊|x|⌋ otherwise.
(3.10)

Note that the scale of the learning rate η is different from regular full-precision network training

because of the rescaling of the gradient values.

Bitwidth heterogeneous federated learning with ProWD

We first introduce our naive remedies for alleviating the challenges posed by the BHFL problem,

and their limitations. Then, we propose a novel FL framework to properly handle BHFL scenarios,

named ProWD, which consists of two core components: progressive weight dequantization and score-based

selective weight aggregation.

Naive remedies for bitwidth heterogeneity in federated learning BHFL deteriorates the

performance of higher-bitwidth clients’ models, while the local models from low-bitwidth clients often

enjoy clear benefits due to knowledge transfer from the high-bitwidth models (See Figure 3.12). We

first suggest a bitwidth-dependent averaging technique for BHFL, preventing interference across different

bitwidth weights during aggregation, referred to as FedGroupedAvg. However, this method suffers from

poor transferability, as the rich knowledge obtained by expressive high-bitwidth models is not transferred

to low-bitwidth ones, while it preserves the performance of higher-bitwidth clients. Thus, we additionally

suggest a modified version of FedGroupedAvg, which allows the knowledge transfer from higher-bitwidth

clients to lower ones, but not vice versa, named as FedGroupedAvg-Asymmetric. These two simple

baselines can improve the performance of the local model but are suboptimal in that it only utilizes part

of the knowledge from participating models. Thus, we propose a novel method to effectively tackle the

challenges in BHFL, which overcomes the limitations of such naive remedies.

Progressive weight dequantization Low-bitwidth models, while hardware-friendly, severely limit

the expressiveness of the model. Aggregating the parameters with such limited information thus may

degrade the quality of high-bitwidth models during federated learning. To this end, we propose a trainable

dequantizer that reconstructs the full-precision weights for given low-precision weights. Yet, directly

reconstructing the low-bit weights to the high-bit may be less effective, especially when the bitwidth gap

is large since there exists a significant disparity between their distributions. To alleviate this issue during

single-step reconstruction, our dequantizer breaks down the problem into block-wise weight dequantization

problems by adopting a stack of network blocks.
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Figure 3.13: (a) Illustration of our ProWD framework. Clients send their local models and hardware

bitwidth specifications to the server. We reduce the distributional disparity among weights from different bitwidth

devices during BHFL by introducing weight dequantization and selective aggregation. (b) Progressive weight

dequantizer recovers low-bit weights into the high-bit via minimizing two loss terms.

Let a Π = {π0, · · · , πk} ⊇ S be an ordered set of bitwidth precisions, where πj is a lower precision

bitwidth than πj+1 ∀j. The lowest and the higest bitwidths of Π correspond to those of S, i.e., π0 = s1

and πk = sm. We denote a progressive weight dequantization function ϕ as a stack of k decomposable

neural network blocks:

ϕ := ϕπ0→πk = ϕπ0→π1 ◦ ϕπ1→π2 ◦ · · · ◦ ϕπk−1→πk , (3.11)

where ◦ denotes the function composition and ϕπj→πj+1 indicates a block that recovers πj+1-bit weights

from πj-bit weights. That is, we design the set of bitwidths for dequantizer blocks Π to include the client

bitwidths so that the dequantizer can directly reconstruct the desired bitwidths from the received low-bit

weights. We implement each block using a dimensionality-preserving function h(·;θ) with a residual

connection to its input. When the model (w, πj>0) arrives from a local client, the server quantizes w

into j lower-bitwidth weights Qw = {qπ0 , ..., qπj−1}. Given πj<k-bit quantized weights qπj , the block

operation is formulated as follows:

q̂πj+1 = ϕπj (qπj ;θj) = qπj + h(qπj ;θj). (3.12)

The central server constructs the weight dataset out of received local model weights by segmenting them

into uniformly-sized blocks (e.g., 64 × 24 × 24). Thus, our dequantizer can utilize differently-shaped

weights from different layers or across heterogeneous neural architectures. For the training of the weight

dequantizer, we introduce two different loss terms. The first term is the reconstruction loss, which is

defined as the average difference of the blockwise weight reconstruction of quantized input weights qπj

and its higher bitwidth ground truth weights qπj+1 :

Lrecon =

k−1∑
j=0

∥∥qπj+1
− ϕπj→πj+1(qπj

;θj)
∥∥
1
. (3.13)

Minimizing the blockwise reconstruction error allows the model to progressively extrapolate missing links

between the low-bitwidth weights and high-bitwidth weights and not to stray far from the intermediate

reconstructions. We note that there is no strict rule for the choices of the target bitwidths of dequantizer

blocks, but we design the dequantizer in which the bitwidth difference between consecutive blocks is

maintained to a similar degree until reaching the target high-bitwidth, avoiding the drastic increase in

bitwidth for each reconstruction step.

The second term is a distillation loss for minimizing the discrepancy in the predictions from the
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model with high-bitwidth ground truth weights and the model with dequantized low-bitwidth weights.

To this end, the central server utilizes a tiny buffer U independent of the local data to compare the

prediction between the high-bit model and the recovered model from the low-bit weights. Given the w

and its quantized low-precision qπ0 = Qπ0(w), we compute a distillation loss using a randomly sampled

minibatch u ∼ U from the buffer as follows:

Ldistill = −Sim
(
f(u;w), f

(
u;ϕ0→k(qπ0

; Θ)
))

, (3.14)

where Sim(·) is a similarity metric for the two output distributions (we use cosine similarity) and

Θ = {θ0, · · · ,θk}. Note that f(u;w) is a softmax class probability of a neural network parameterized

by w given input u. This distillation loss allows ProWD to directly tackle the prediction task with the

reconstructed weights, which helps it recover full-precision weights while considering the downstream task

performance. The final objective for training ProWD at the server is given as follows:

L = Lrecon + λLdistill, (3.15)

where λ is a hyperparameter to balance the two loss terms. Note that the model is not very sensitive to

the choice of λ, and thus we set λ = 1 in all our experiments. The training steps of our dequantizer are

described in Algorithm 7.

Algorithm 7 Training of progressive weight dequantizer

input set of bitwidths Π = {π0, . . . , πk}, dequantizer ϕπ0→πk
Θ , input weights and corresponding bitwidth (w, πj),

neural network f , unsupervised buffer U , balancing coefficient λ.

1: qi<j = {Qπi(w)}j−1
i=0 ▷ Quantize into each of the lower bitwidths

2: Construct data loader Dw using {qi<j ,w}
3: for (q0, . . . , qj−1, w) ∼ Dw do

4: Sample u ∼ U augmented with gaussian noise

5: Lrecon =
∑j−1

i=0

∥∥qi+1 − ϕπi→πi+1(qi;θi)
∥∥
1

6: Ldistill = −Sim(f(u;w), f(u;ϕΘ(q0)))

7: L = Lrecon + λLdistill

8: Update weight dequantizer ϕΘ to minimize L
9: end for

Training details of progressive weight dequantizer
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Figure 3.14: Illustration of a reshaping process

on the weight module.

Construction of the weights dataset Given

the local model weights w, we construct the weight

datasets to learn the progressive weight dequan-

tizer. Since layers in deep neural networks are often

composed of weights with different dimensionality

each other, we split them into uniformly-sized sub-

weights. As the following common structures for

CNN models are mainly composed of multiple con-

volution layers, such as VGG [144] and ResNet [55],

we utilize convolution weights with a filter size of

3× 3, and the input dimension is 64 or larger to

construct the weight dataset. That is, we use all

48



convolution weights except the weights from the first layer (the input dimension is the image channel, 3).

We split the weights at each convolution layer into partial modules with the shape of 64 × 64 × 3 × 3

(e.g., the weights with the shape of 256× 128× 3× 3 are split into 4 · 2 = 8 different modules. Next, we

reshape each module sized by 24× 24 with 64 channels (i.e., 64× 24× 24) as illustrated in Figure 3.14.

Block design for progressive weight dequantizer We implement our dimensionality-preserving

network block ϕ for our dequantizer using two layered affine coupling layers, and the design of each layer

ρ is as follows:

ŵ1:d = w1:d + α(wd+1:D),

ŵd+1:D = wd+1:D ⊙ exp
(
β(ŵ1:d)

)
+ γ(ŵ1:d),

(3.16)

where ŵ = ρ(w), α, β, and γ are DenseNet [59] blocks while we omit the notation of weights in each

layer for readability. To this end, a jth network block of progressive weight dequantizer is formulated as

follows:

ŵ = ϕπj→πj+1(w;θj) = w + τρ(ρ(ŵ)), (3.17)

where τ is a scaling coefficient and we set τ = 0.1 for all experiments. We want to note that there is a

huge potential to further develop the design of our dequantizer. We intend to suggest a better design

for the dequantization function for recovering high-bitwidth weights from low-bitwidth weights in future

work.

Score-based selective weight aggregation

As described in Figure 3.12, using a naive aggregation technique, such as simple averaging, may

lead the model training to fall into a suboptimal local minimum. To prevent such distribution shifts of

weights during BHFL, we assert that the low-bitwidth models should share similar gradient directions

as the full-precision model, as inspired by the observation in [191] that there exists a strong correlation

between the training stability and the deviation of the quantized model’s gradient directions from the

full-precision model, measured by the cosine similarity. Let us consider a simple two-client federated

learning framework where a server communicates with a full-precision model parameterized with wHigh

and a low-bitwidth model parameterized with wLow. The goal of the low-bitwidth model then is to distill

the knowledge of wHigh: 〈
∂ℓ(f(B;wHigh))

∂wHigh
,
∂Qℓ(fQ(B;wLow))

∂QwLow

〉
≥ 0, (3.18)

where ℓ is a task loss and f(·;w) is a neural network parameterized by w. The subscript Q denotes the

quantized operations on the weights, activations, and gradients.

However, unlike the setting of [191], under BHFL scenarios, it is impossible to preserve full-precision

knowledge on low-bitwidth local devices as they have no means to represent them. Thus, we impose a

selective weight aggregation technique based on the relevancy among the weights from the local clients.

When a central server receives the local models from different bitwidth clients, we select sparse sub-weights

from lower-bitwidth models that are compatible with the full-precision aggregated weights.

Let w
(r)
High and w

(r)
Low denote average high-bit weights and the low-bit weights that the server received

at communication round r, respectively. When ∆wHigh = w
(r)
High −w

(r−1)
High and ∆wLow = w

(r)
Low −w

(r−1)
Low ,
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we encourage the high-bit and low-bit model weights to have similar update directions by disregarding a

few outliers in the low-bit models. That is, Given a sparsity ratio τ , we encourage a server to obtain the

binary mask c∗ as follows:

c∗ = argmax
c

(c⊙∆wLow)
⊤∆wHigh

∥c⊙∆wLow∥∥∆wHigh∥
, s.t. |c∗| ≤ τ. (3.19)

For BHFL scenarios with multiple bitwidths, we split high-/low-bitwidths weights based on the mean

bit-width of the given bitwidth set. We formulate the equation as a simple optimization problem to

obtain a desired binary mask c∗ to maximize the cosine similarity between sparsified averaged weight

movement of low-bitwidth models and the averaged movement of the high-bitwidth models. The process

is rapidly optimized within a few steps (e.g., 10) and a marginal training time (∼ 10ms per client). To

this end, we perform selective weight aggregation as follows:

wG ←
1

N

N∑
n=1

cn ⊙wn, (3.20)

where cn = c∗, if sn is one of low-bitwidth specifications, otherwise, cn is a all-one tensor with the same

shape as wn. The overall procedure of our BHFL framework is described in Algorithm 8. Note that the

dequantizer can be updated anytime during the FL process in a concurrent manner because it does not

require the latest client model weights for training. Thus, there is no training time bottleneck introduced

by the training of our dequantizer.

Algorithm 8 ProWD framework for BHFL

input clients C ← {wn, sn}Nn=1, sj ∈ Π = {π0, . . . , πk}, ∀j, weight dequantizer ϕπ0→πk
Θ , global weights wG.

1: for each round r = 1, 2, ..., R do

2: Sample C(r) ⊆ C where |C(r)| = M

3: Distribute federated weights wG to clients C(r)

4: for each client (wn, sn) ∈ C(r) in parallel do

5: wn ← Qsn(wG) ▷ send sn-bit quantized weights

6: wn ← LocalUpdate(wn, sn)

7: Broadcast (wn, sn) to the central server

8: end for

9: wn ← ϕΘ(wn), if sn ̸= πk ▷ Dequantize weights

10: Obtain binary masks c∗ using Equation 3.19

11: wG ← 1
M

∑M
n=1 cn ⊙wn ▷ Equation 3.20

12: end for

3.2.4 Experimental Results

Datasets

We validate our method against the relevant FL methods under several BHFL scenarios, with varying

bitwidth configurations of participating clients. We use the widely used benchmark dataset for federated

learning methods, CIFAR-10 to validate our method following the IID experimental settings of the

existing works [126, 49]. CIFAR-10 is an image classification dataset that consists of 10 object classes,

each of which has 5,000 training instances and 1,000 test instances. For FL purposes, we uniformly split

the training instances per class by the number of clients participating in the federated learning system.

We use a modified version of VGG-7 network [144] for all our experiments.
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Table 3.7: Average accuracy at each bitwidth and average accueacy across all clients on CIFAR-10 dataset. We

set participating clients with 50% of Int8 and 50% of Float32 models (Left), and 50% of Int8 and 50% of Float32

models (Right). All of the results are measured by computing the 95% confidence interval over three independent

runs.

Method CIFAR-10, Int8 (50%) - Float32 (50%) CIFAR-10, Int8 (80%) - Float32 (20%)

int8 acc float32 acc gap average int8 acc float32 acc gap average

Local Training 69.59 (± 0.34) 75.82 (± 0.41) +6.23 72.71 (± 0.26) 69.39 (± 0.34) 76.41 (± 0.52) +7.02 70.79 (± 0.34)

FedAvg [105] 76.88 (± 0.49) 76.23 (± 0.36) -0.65 76.56 (± 0.36) 77.43 (± 0.83) 74.64 (± 1.21) -2.79 76.87 (± 0.87)

FedProx [94] 71.16 (± 0.35) 69.28 (± 0.90) -1.88 70.22 (± 0.55) 69.60 (± 0.50) 66.28 (± 1.24) -3.32 68.94 (± 0.57)

FedPAQ [126] 78.01 (± 0.55) 84.93 (± 0.30) +6.93 81.47 (± 0.29) 76.61 (± 0.60) 82.27 (± 0.42) +5.66 77.74 (± 0.49)

FedCOM [49] 75.37 (± 0.52) 77.69 (± 0.45) +2.32 76.53 (± 0.38) 73.60 (± 1.08) 80.73 (± 0.73) +7.12 75.03 (± 0.94)

FedCOMGATE [49] 76.74 (± 0.59) 77.36 (± 0.55) +0.62 77.05 (± 0.36) 74.48 (± 0.63) 81.18 (± 0.56) +6.70 75.82 (± 0.53)

FedGroupedAvg 61.85 (± 0.78) 85.08 (± 0.28) +23.23 73.46 (± 0.29) 71.76 (± 0.68) 78.07 (± 0.58) +6.31 73.02 (± 0.65)

FedGroupedAvg-Asymmetric 78.39 (± 0.54) 84.97 (± 0.27) +6.57 81.68 (± 0.26) 70.14 (± 0.36) 78.70 (± 0.48) +8.56 71.85 (± 0.36)

ProWD (Ours) 82.87 (± 0.37) 85.99 (± 0.20) +3.12 84.43 (± 0.22) 79.23 (± 0.25) 81.26 (± 0.45) +2.03 79.63 (± 0.23)
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Figure 3.15: Visualization of average test accuracy on CIFAR-10 with 10 clients where the bitwidth of the

clients is composed of (a) 50% of Int8 and 50% of Float32 and (b) 80% of Int8 and 20% of Float32

during BHFL. We average the results over three independent runs.

Baselines

We compare our method BiTAT against following FL baselines: FedAvg [105]: A popular federated

learning method that performs simple averaging of the local models at the server at each round.

FedProx [94]: A federated learning method that aims to deal with device heterogeneity, with additional

ℓ2 distance regularization terms during the update of local models to prevent the model divergence.

FedPAQ [126]: A quantized parameter communication (QPC)-based FL method, which at each round

quantizes the difference between the current local weights and the last aggregated weights at each client,

then sends it to the server for aggregation.

FedCOM [49]: An extension of FedPAQ with a learnable global learning rate, which achieves faster

convergence in data-homogeneous settings.

FedCOMGATE [49]: An extension of FedCOM to data-heterogeneous settings, which uses a correction

vector that constrains the local models to evolve in a similar direction.

FedGroupedAvg: A variant of FedAvg in which the server separately aggregates weights only from the

same bitwidth clients, and redistributes them to corresponding local clients.

FedGroupedAvg-Asymmetric: A modified version of FedGroupedAvg that sends clients only the

aggregated weights of other clients that has the same bitwidth or higher.
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Table 3.8: Average accuracy at each bitwidth, and

across all clients on CIFAR-10. We set clients with 30%

of Int6, 30% of Int8, 20% of Int12, and 20% of Int16

models. All the results are measured by computing and

standard deviation over three independent runs.

Method int6 int8 int12 int16 gap AvgAcc

Local Training 69.51 69.25 68.96 70.40 +0.89 69.50

FedAvg 80.17 85.71 86.49 87.02 +6.85 84.47

FedPAQ 80.78 85.30 85.98 86.93 +6.15 84.40

FedCom 39.47 55.14 53.07 53.26 +13.79 49.65

FedComGate 56.74 68.43 67.63 68.14 +11.69 64.70

FedGroupedAvg 79.27 80.62 76.94 77.39 -1.88 78.83

FedGroup-Asym 80.25 79.74 79.18 77.73 -2.52 79.38

ProWD (Ours) 82.89 86.11 86.47 87.51 +4.62 85.50

Table 3.9: Ablation study for ProWD. Deq and SWA

refer to the progressive weight dequantizer and selective

weight aggregation, respectively. We report the results

over three independent runs.

Method CIFAR-10, int8 (50%) - Float32 (50%)

Deq SWA int8 acc float32 acc average

FedAvg − − 76.55 (± 0.44) 75.71 (± 0.32) 75.83 (± 0.41)

+Deq ✓ − 79.60 (± 0.39) 80.38 (± 0.44) 79.99 (± 0.26)

+SWA − ✓ 79.79 (± 0.98) 85.94 (± 0.92) 82.84 (± 0.55)

Ours ✓ ✓ 82.87 (± 0.37) 85.99 (± 0.20) 84.43 (± 0.22)

Method CIFAR-10, int8 (80%) - Float32 (20%)

Deq SWA int8 acc float32 acc average

FedAvg − − 77.43 (± 0.83) 74.64 (± 1.21) 76.87 (± 0.87)

+Deq ✓ − 78.52 (± 0.50) 76.08 (± 0.44) 79.03 (± 0.31)

+SWA − ✓ 78.42 (± 0.47) 80.82 (± 0.31) 78.90 (± 0.37)

Ours ✓ ✓ 79.23 (± 0.25) 81.26 (± 0.45) 79.63 (± 0.23)

Quantitative evaluation

We validate our methods under multiple BHFL scenarios with heterogeneous proportions of bitwidths

among the clients. We first report the experimental results with 50% of Int8 and 50% Float32 clients

(Left) and 80% of Int8 and 20% Float32 clients (Right) in Table 3.7. Int8 models in FedAvg obtain

superior performance to local training, where each client trains independently on its local task due to

positive knowledge transfer from the full-precision weights. This is also evident in the poor performance

of Int8 clients in FedGroupedAvg which demonstrates that FL only with low-bitwidth clients is highly

limited due to the lack of information the low-bit weights provide. QPC-based FL methods, FedPAQ,

FedCOM, and FedCOMGATE, communicate the quantized form of accumulated gradients at each round,

and the server adds the accumulated gradients to the global model at each round, before broadcasting

it to the clients. Such gradient communication does not degrade the local task information during FL,

which is helpful for Float32 models to mitigate the interference from the low-bit weights. However, the

low-bit clients (e.g., Int8) cannot directly amalgamate the expressive knowledge from the high-bitwidth

weights, easily falling into suboptimal local minima. FedGroupedAvg variants, while preserving the

performance of the high-bit models, they often obtain inferior performance as they do not exploit the

full knowledge provided by other models. On the other hand, our ProWD consistently outperforms

all baselines with varying compositions of bitwidths, yielding small performance gap between low- and

high-bitwidths, which demonstrates the effectiveness of the proposed progressive weight dequantization

scheme with selective weight aggregation. The convergence plot in Figure 3.15 shows that our method

rapidly converges to good performance while baselines converge to suboptimal local minima.

We further demonstrate the versatility of the ProWD framework under a BHFL scenario with

multiple bitwidths in Table 3.8, using devices with diverse bitwidths. Note that we allow local clients

to send the parameters with local bitwidth for this experiment, rather than ternarizing them for uplink

communication. Int6 and Int8 are considered as low-bitwidths and Int12 and Int16 are considered as

high-bitwidths. Our ProWD consistently outperforms baselines with any bitwidths while achieving

a small accuracy gap between Int6 and Int16 clients. We expect that the reduced performance gap

between ours and FedAvg is due the smaller disparity between weight distributions compared to those in

Table 3.7 (Int8↔Float32), since all clients perform low-bit operations with slightly different bitwidths, in
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Figure 3.16: Performance comparison between

FedAvg and Ours under the Bitwidth Heterogeneous

Federated Learning setting with Int6, Int7, Int8, and

Float32 clients.
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Figure 3.17: The Weight Distribution after Pro-

gressive Dequantization. Visualization of the distri-

bution after the reconstruction of low-bitwidth model

weights. We visualize the last Convolution layer weights

in the neural network, trained on CIFAR-10.

which case FedAvg may suffer less from distributional shift at aggregation. To validate that, we further

provide additional experiments with larger variance among the bitwidths of the participating devices

in Figure 3.16, which shows a significant performance gain of our ProWD to FedAvg (Int6 clients acc:

5.9%↑, average acc: 2.7%↑, performance gap: 36%↓).

Ablation study Now we explicate the effect of each ingredient of our ProWD on the CIFAR-10 with

an ablation study. We experiment on both the uniform (50% of Float32 and 50% of Int8 clients) and

low-bitwidth dominant scenario (20% of Float32 and 80% of Int8 clients). As shown in Table 3.9, thanks

to its ability to reconstruct full-precision weights from low-bitwidth weights, our weight dequantizer

(Deq) improves the performance by 5.5% and 2.8% over that of FedAvg, respectively for each scenario.

Also, our selective weight aggregation (SWA) minimizes the discrepancy across the model updates from

different bitwidth clients, obtaining the significant performance gain of 9.2% and 2.6% for each scenario.

This experimental result confirms the efficacy of both components, progressive weight decomposition, and

selective weight aggregation.

Qualitative analysis

The effect of progressive weight dequantization To further analyze the role of the progressive

weight dequantizer in our method, we visualize stepwise distributions of reconstructed weights using

our dequantizer. For ease of interpretation, we use the initial input as the quantized weight from

the last convolution layer in the Int8 client for training on CIFAR-10, where the result is illustrated

in Figure 3.17. As low-bitwidth clients transmit ternarized model weights to the central server, the

distribution of input weights to the dequantizer is visualized in three peaks. We also visualize the

distribution from reconstructed weights after forwarding initial weights up to the first, second, and last

block in our dequantizer, colored by orange, pink, and navy, respectively. As we expected, our dequantizer

progressively recovers ternary weights towards the high-bitwidths by forwarding them through sequential

dequantization blocks.
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Figure 3.18: Cosine distance matrix between the weights of each client. Elements in a row and column

describe the index of local clients. (a) the first five clients correspond to Int8 (Top left) and the other five to

Float32 (Bottom right). (b) the first eight clients correspond to Int8, and the other two to Float32. Darker colors

indicate higher similarities between clients.

Weight distance between local clients Next, we visualize the distance of model weights between

clients in Figure 3.18 to dissect the difference of learned representations during BHFL. We use the

cosine distance, computed by 1 − cos sim(wn,wm) between n- and m-th local clients. Each client in

the local training (Local) model does not share the knowledge with other clients, resulting in a large

weight distance. Weights obtained using FedAvg have smaller distances between Int8 and Float32 models

than the distances among the Int8 models, caused by the distributional shift of the high-bitwidth model

weights towards the distribution of low-bitwidth model weights (Please see Figure 3.12).

Clients in FedPAQ communicate accumulated local gradients while keeping their local weights,

alleviating the detrimental distributional shift of weights to some degree, resulting in a higher similarity

among the same bitwidth clients than in bit-heterogeneous cases. Int8 client weights in FedGroupedAvg

stay close to each other while straying far from the Float32 client weights, as it only allows communication

among clients with the same bitwidth. FedProx shows a similar tendency with FedAvg. Interestingly, the

Int8 clients in FedCOMGATE show different behaviors with FedCOM, with the weight distance among

them farther than any other BHFL methods. This phenomenon is due to the “correction vectors” utilized

in the FedCOMGATE algorithm designed to adapt to data heterogeneity and enable the weights to behave

semi-independently, improving the model accuracy compared to FedCOM with a marginal amount. While

FedGroupedAvg-Asymmetric (Asymm.) shows a similar distance matrix with FedGroupedAvg (Grouped),

it allows the knowledge transfer from-high-to-low-bitwidths clients, performing higher weight similarity

between bitwidth heterogeneous clients. Interestingly, ProWD keeps the clients’ weights sufficiently

different between each bitwidth and obtains sufficiently low proximity across bit-heterogeneous clients,

successfully preventing the distributional shift in high-precision weights due to weight averaging. Our

proposed method also allows high transferability of the learned knowledge across clients, showing better

adaptation of the local tasks over QPC-based methods (Please see Table 3.7 and Figure 3.15).

3.2.5 Summary

We proposed a novel yet practical heterogeneous federated learning scenario where the participating

devices have different bitwidth specifications, in which case the model aggregation could have a highly

detrimental effect. We further identify the two main causes of the performance degeneration, which are
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the suboptimal loss convergence due to distributional shift from aggregation, and the limited expressive

power of the low-bitwidth weights. To tackle these challenges, we proposed a novel framework for

bit-heterogeneous FL, based on progressive dequantization of the weights and selective weight aggregation.

The progressive dequantizer at the server receives weights from low-bitwidth clients and recovers them

into higher bitwidth weights by forwarding them through a sequence of dequantizer blocks. Further,

selective weight aggregation determines which low-bit weight elements are compatible with higher-bit

ones. Empirical evaluations of our framework across two BHFL scenarios with varying degrees of bitwidth-

heterogeneity on the benchmark dataset demonstrate the effectiveness of our framework, which largely

outperforms relevant FL baselines.
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Chapter 4. Realistic Continual Learning with Incomplete and

Uncurated Data Stream

4.1 Online Coreset Selection for Rehearsal-based Continual

Learning [176]

4.1.1 Motivation

Humans possess the ability to learn a large number of tasks by accumulating knowledge and skills

over time. Building a system resembling human learning abilities is a deep-rooted desire since sustainable

learning over a long-term period is essential for general artificial intelligence. In light of this need,

continual learning (CL) [152], or lifelong learning, tackles a learning scenario where a model continuously

learns over a sequence of tasks [80, 97] within a broad research area, such as classification [74, 19], image

generation [182], language learning [96, 9], clinical application [86, 91], speech recognition [132], and

federated learning [174]. A well-known challenge for continual learning is catastrophic forgetting [104],

where the continual learner loses the fidelity for past tasks after adapting the previously learned knowledge

to future tasks.

Recent rehearsal-based continual learning methods adapt the continual model to the previous tasks by

maintaining and revisiting a small replay buffer [153, 109]. However, the majority of these methods store

random-sampled instances as a proxy set to mitigate catastrophic forgetting, limiting their practicality

to real-world applications (see Figure 4.1 Left) when all the training instances are not equally useful,

as some of them can be more representative or informative for the current task, and others can lead to

performance degeneration for previous tasks. Furthermore, these unequal potentials could be more severe

under practical scenarios containing imbalanced, streaming, or noisy instances (see Figure 4.2). This

leads to an essential question in continual learning:

How can we obtain a coreset to promote task adaptation for the current task while minimizing

catastrophic forgetting on previously seen tasks?

To address this question, we propose Online Coreset Selection (OCS), a novel method for continual

learning that selects representative training instances for the current and previous tasks from arriving

streaming data in an online fashion based on our following three selection strategies: (1) Minibatch

similarity selects samples that are representative to the current task Tt. (2) sample diversity encourages

minimal redundancy among the samples of current task Tt. (3) Coreset affinity promotes minimum

interference between the selected samples and knowledge of the previous tasks Tk, ∀k < t. To this end,

OCS minimizes the catastrophic forgetting of the previous tasks by utilizing the obtained coreset for

future training and also encourages the current task adaptation by updating the model parameters on

the top-κ selected data instances. The overall concept is illustrated in Figure 4.1 Right.

Our method is simple, intuitive, and generally applicable to any rehearsal-based continual learning

method. We evaluate the performance of OCS on various continual learning scenarios and show that it

outperforms state-of-the-art rehearsal-based techniques on balanced, imbalanced, and noisy continual

learning benchmarks of varying complexity. We also show that OCS is general and exhibits collaborative
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Figure 4.1: Illustration of existing rehearsal-based CL and Online Coreset Selection (OCS): (a)

Existing rehearsal-based methods train on all the arrived instances and memorize a fraction of them in the replay

buffer, which results in a suboptimal performance due to the outliers (noisy or biased instances). (b) OCS obtains

the coreset by leveraging our three selection strategies, which discard the outliers at each iteration. Consequently,

the selected examples promote generalization and minimize interference with the previous tasks.
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Figure 4.2: Realistic continual learning scenarios: (a) Each task consists of class-imbalanced instances.

(b) Each task has uninformative noise instances, which hamper training.

learning with the existing rehearsal-based methods, leading to increased task adaptation and inhibiting

catastrophic forgetting. To summarize, our contributions are threefold:

• We address the problem of coreset selection for realistic and challenging continual learning scenarios,

where the data continuum is composed of class-imbalanced or noisy instances that deteriorate the

performance of the continual learner during training.

• We propose Online Coreset Selection (OCS), a simple yet effective online coreset selection method

to obtain a representative and diverse subset that has a high affinity to the previous tasks from each

minibatch during continual learning. Specifically, we present three gradient-based selection criteria to

select the coreset for current task adaptation while mitigating catastrophic forgetting.

• We demonstrate that OCS is applicable to any rehearsal-based continual learning method and experi-

mentally validate it on multiple benchmark scenarios, where it largely improves the performance of the

base algorithms across various performance metrics.

4.1.2 Related Work

Continual learning. In the past few years, there has been significant progress in continual

learning to alleviate catastrophic forgetting [104]. The regularization approaches [74, 90, 137] modify

the model parameters with additional regularization constraints to prevent catastrophic forgetting. The

architecture approaches [130, 178, 170, 95, 175] utilize network isolation or expansion during continual
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learning to improve network performance. Another line of research uses rehearsal approaches, which

memorize or generate a small fraction of data points for previous tasks and utilize them to retain the

task knowledge [102, 19, 4, 11]. For example, Gradient-based Sample Selection (GSS) [4] formulates

the selection of the replay buffer as a constraint selection problem to maximize the variance of gradient

direction. ER-MIR [3] iteratively constructs the replay buffer using a loss-based criterion, where the model

selects the top-κ instances that increase the loss between the current and previous iteration. However,

the existing rehearsal-based methods [125, 4, 3, 19, 20] do not select the coreset before the current task

adaptation and update the model on all the arriving data streams, which makes them susceptible to

real-world applications that include noisy and imbalanced data distributions. In contrast, OCS selects

the instances before updating the model using our proposed selection criteria, which makes it robust to

past and current task training across various CL scenarios.

Coreset selection. There exist various directions to obtain a coreset from a large dataset. Im-

portance sampling [64, 70, 145] strengthens the loss/gradients of important samples based on influence

functions. Kool et al. [75] connect stochastic Gumbel-top-k trick and beam search to hierarchically

sample sequences without replacement. iCaRL [125] propose a herding-based strategy for coreset se-

lection. VCL [113] formulate the coreset summarization in continual learning using online variational

inference [134, 12]. GSS [4] select the replay buffer to maximize the variance in the gradient space.

Contrary to these methods, OCS considers diversity, task informativity, and relevancy to past tasks.

Recently, Borsos et al. [11] propose a bilevel optimization framework with cardinality constraints for

coreset selection. However, their method is extremely limited in practice and inapplicable in large-scale

settings due to the excessive computational cost incurred during training. In contrast, our method is

simple and scalable since it can construct the coreset in the online streaming data continuum without

additional optimization constraints.

4.1.3 Approach

Rehearsal-based Continual Learning

We consider learning a model over a sequence of tasks {T1, . . . , TT } = T , where each task is

composed of independently and identically distributed datapoints and their labels, such that task Tt
includes Dt = {xt,n, yt,n}Nt

n=1 ∼ Xt × Yt, where Nt is the total number of data instances, and Xt × Yt
is an unknown data generating distribution. We assume that an arbitrary set of labels for task Tt,
yt = {yt,n}Nt

n=1 has unique classes, yt ∩ yk = ∅, ∀t ≠ k. In a standard continual learning scenario, the

model learns a corresponding task at each step and t-th task is accessible at step t only. Let neural

network fΘ : X1:T → Y1:T be parameterized by a set of weights Θ = {θl}Ll=1, where L is the number of

layers in the neural network. We define the training objective at step t as follows:

minimize
Θ

Nt∑
n=1

ℓ(fΘ(xt,n), yt,n), (4.1)

where ℓ(·) is any standard loss function (e.g., cross-entropy loss). The naive CL design where a simple

sequential training on multiple tasks without any means for tackling catastrophic forgetting cannot retain

the knowledge of previous tasks and thus results in catastrophic forgetting. To tackle this problem,

rehearsal-based methods [113, 19, 153] update the model on a randomly sampled replay buffer Ck
constructed from the previously observed tasks, where Ck = {xk,j , yk,j}Jkj=1 ∼ Dk, ∀k < t and Jk ≪ Nk.

Consequently, the quality of selected instances is essential for rehearsal-based continual learning. For
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example, some data instances can be more informative and representative than others to describe a task

and improve model performance. In contrast, some data instances can degrade the model’s memorization

of past tasks’ knowledge. Therefore, obtaining the most beneficial examples for the current task is crucial

for the success of rehearsal-based CL methods.
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Figure 4.3: Per-class accuracy and average forget-

ting when a model trained on MNIST (T1) is updated
on a single data point at class c on CIFAR-10 (T2).

To validate our hypothesis that samples have

a different impact on current task adaptation and

catastrophic forgetting of past tasks, we design a

simple learning scenario with a sequence of two

tasks, MNIST (T1) → CIFAR-10 (T2). 41To val-

idate our hypothesis that samples have a different

impact on current task adaptation and catastrophic

forgetting of past tasks, we design a learning sce-

nario with a sequence of two tasks, MNIST (T1)→
CIFAR-10 (T2) using ResNet-18. After the stan-

dard single epoch training on T1, we independently
update the model weights through a single backpropagation step using a single data point from T2, and
measure the test accuracy of its corresponding class c and averaged forgetting of the entire dataset of a

past task T1 T1. Results for individual impacts on 1000 data points from T2 are described in Figure 4.3.

The influence of each data point from T2 has a large disparity not only on the corresponding class accuracy

but also on past task’s forgetting that results in a very high standard deviation. We emphasize that

each data point has a different potential impact in terms of forgetting past tasks. Few data points are

much more robust to catastrophic forgetting than others, and this can be severe when the influences are

accumulated during training.

Based on this motivation, our objective is to select the data instances that can promote current task

adaptation while minimizing catastrophic forgetting of the previous tasks. We propose a selection criterion

that selects the subset that maximizes the gradient similarity between the representative instances and

the current task dataset. More formally:

u∗ = maximize
u∈Nκ

S

(
1

Nt
∇fΘ (Dt) ,

1

κ

∑
n∈u

∇fΘ (xt,n, yt,n)

)
, where u = {n : n ∈ N<Nt

}, (4.2)

where S is any arbitrary similarity function and u∗ is an index set that selects top-κ informative

samples without replacement. However, obtaining a representative subset from the entire dataset is

computationally expensive and intractable for online continual learning; therefore, we consider a minibatch

as an approximation of the dataset and select a few representative data instances at each minibatch

iteration. Consequently, the model iteratively updates the parameters to find the optimal local minima

of the loss using informative data points, which obtain similar gradient directions with the averaged

gradients of the dataset. In the next section, we propose Online Coreset Selection (OCS), which consists

of a simple similarity criterion to achieve this objective. However, the similarity criterion is insufficient to

select the representative coreset for online continual learning; hence, we propose diversity and coreset

affinity criteria to mitigate catastrophic forgetting.

Distance between the whole dataset and its minibatch. To verify our conjecture that a

minibatch can be an approximation of the whole dataset and select a few representative data instances at

each minibatch iteration, we empirically validate that the whole dataset and its minibatch have significant

semantic relevancy. More formally, for a given subset Bt, dataset Dt, and ϵ > 0, we suppose that the
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Figure 4.4: Empirical validation of ℓ2 distance and cosine similarity between the gradient of the

entire dataset and its minibatch gradient. We report the mean and standard deviation of the metrics across

five independent runs.

neural network satisfies following equation,

S∗
(

1

Nt
∇fΘ(Dt),

1

|Bt|
∇fΘ(Bt)

)
≤ ϵ, (4.3)

where S∗ is an arbitrary distance function. To this end, we conduct a simple experiment using two

different datasets (MNIST and CIFAR-10) and network architectures (MLP and ResNet-18) to show that

it generally holds on various datasets and network architectures. We use a 2-layered MLP for MNIST

and ResNet-18 for CIFAR-10 in the following analysis. At each iteration of training, we measure the

ℓ2 distance (S∗(·) = ℓ2(·)) and cosine similarity (S∗(·) = 1/(sim(·))) between the training minibatch’s

averaged gradient and the entire training dataset. To show that the distance is sufficiently small, we also

measure the gradient ℓ2 distance between the entire and irrelevant datasets. Note that we recalculated

the gradient for the whole dataset at each iteration for all results to correctly measure the distance at

each step. As shown in Figure 4.4, the gradient of a larger minibatch shows a better approximation to the

gradient of the entire dataset for ℓ2 distance and cosine similarity. Further, note that even the gradients

of an arbitrary subset with a small-sized minibatch are significantly similar to the whole dataset with

a small ϵ, and it is more evident when compared to the irrelevant gradients from a different dataset,

PMNIST (Permuted MNIST) [45].

Online Coreset Selection

We introduce our selection strategies and propose Online Coreset Selection (OCS) to strengthen

current task adaptation and mitigate catastrophic forgetting. Thus far, the rehearsal-based continual

learning methods [125, 4, 3, 19, 20] populate the replay buffer to preserve the knowledge of the previous

tasks. However, we argue that some instances may be non-informative and inappropriate to construct the

replay buffer under realistic setups (such as video streaming or imbalanced continual learning scenarios),

leading to the degradation of the model’s performance. Moreover, selecting valuable samples for current

task training is critical since the model can easily overfit the biased and noisy data stream, negatively

affecting the model generalization. To satisfy these desiderata, we propose minibatch similarity (S) and
sample diversity (V) criteria based on our assumption, as mentioned earlier, to adaptively select the

useful instances without the influence of outliers.

Definition 1 (Minibatch similarity). Let bt,n = {xt,n, yt,n} ∈ Bt denote n-th pair of data point with

gradient ∇fΘ (bt,n) and its corresponding label at task Tt. Let ∇̄fΘ(Bt) denote the averaged gradient
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vector of Bt. The minibatch similarity S (bt,n | Bt) between bt,n and Bt is given by

S (bt,n | Bt) =
∇fΘ (bt,n) ∇̄fΘ (Bt)⊤

∥∇fΘ (bt,n)∥ · ∥∇̄fΘ (Bt)∥
. (4.4)

Definition 2 (Sample diversity). Let bt,n = {xt,n, yt,n} ∈ Bt denote n-th pair of a data point with

gradient ∇fΘ (bt,n) and its corresponding label at task Tt. The sample diversity V
(
bt,n | Bt\bt,n

)
between

bt,n and all other instances in Bt (Bt\bt,n
) is given by

V
(
bt,n | Bt\bt,n

)
=
−1

Nt − 1

Nt−1∑
p ̸=n

∇fΘ (bt,n)∇fΘ (bt,p)
⊤

∥∇fΘ (bt,n)∥ · ∥∇fΘ (bt,p)∥
. (4.5)

In particular, minibatch similarity considers a minibatch as an approximation of the current task

dataset and compares the minibatch-level similarity between the gradient vector of a data point b and its

minibatch B. It measures how well a given data instance describes the current task at each training step.

Note that selecting examples with the largest minibatch similarity is reasonable when the variance of task

instances is low; otherwise, it increases the redundancy among coreset items. In contrast, we formulate

the sample diversity of each data point b ∈ B as an averaged dissimilarity (i.e., an average of negative

similarities) between a data point itself and other samples in the same minibatch B, and not as an average

similarity. Thus, the measure of sample diversity in Equation (4) is negative, and the range is [−1, 0].

Online Coreset Selection for Current Task Adaptation

The model receives a data continuum during training, including noisy or redundant data instances in

real-world scenarios. Consequently, the arriving data instances can interrupt and hurt the performance of

the model. To tackle this problem, we consider an amalgamation of minibatch similarity and sample

diversity to select the most helpful instances for current task training. More formally, our online coreset

selection for the current task adaptation can be defined as follows:

u∗ =
{
argmax

n

(κ) S (bt,n | Bt) + V
(
bt,n | Bt\bt,n

) ∣∣∣ n ∈ {0, . . . , |Bt| − 1}
}
. (4.6)

We emphasize that we can obtain the top-κ valuable instances for the current task by computing

Equation 4.6 in an online manner. Once the representative coreset is selected, we optimize the following

objective for the current task training at each iteration:

minimize
Θ

1

κ

κ∑
(x̂,ŷ)∈B̂t

ℓ (fΘ (x̂) , ŷ) , where B̂t = Bt[u∗]. (4.7)

We consider a selected coreset at each iteration as a candidate for the replay buffer. After the completion

of each task training, we choose a coreset Ct among the collected candidates, or we may also iteratively

update Ct to maintain the bounded buffer size for continual learning.

Online Coreset Selection for Continual Learning

We now formulate OCS for online continual learning, where our objective is to obtain the coreset to

retain the knowledge of the previous tasks using our proposed similarity and diversity selection criteria.

However, continual learning is more challenging as the model suffers from catastrophic forgetting and

the coreset size is smaller than the size of the arriving data streams. Thus, inspired by our observation
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in Figure 4.3, we aim to train the continual learner on the selected instances that represent the current

task and prevent the performance degeneration of previous tasks.

We achieve our goal by introducing our Coreset affinity criterion A to Equation 4.6. In particular, A
computes the gradient vector similarity between a training sample and the coreset for previous tasks.

More formally, A can be defined as follows:

Definition 3 (Coreset affinity). Let bt,n = {xt,n, yt,n} ∈ Bt denote the n-th pair of a data point with

gradient ∇fΘ (bt,n) and its corresponding label at task Tt. Further let ∇̄fΘ(BC) be the averaged gradient

vector of BC, which is randomly sampled from the coreset C. The coreset affinity A (bt,n | BC ∼ C) between
bt,n and BC is given by

A (bt,n | BC ∼ C) =
∇fΘ (bt,n) ∇̄fΘ (BC)⊤

∥∇fΘ (bt,n) ∥ · ∥∇̄fΘ (BC) ∥
. (4.8)

While the past task is inaccessible after the completion of its training, our selectively populated

replay buffer can be effectively used to describe the knowledge of the previous tasks. The key idea is

to select the examples that minimize the angle between the gradient vector of the coreset containing

previous task examples and the current task examples. Instead of randomly replacing the candidates

in the coreset [102, 19, 4, 11], A promotes the selection of examples that do not degenerate the model

performance on previous tasks. To this end, we select the most beneficial training instances which are

representative and diverse for current task adaptation while maintaining the knowledge of past tasks. In

summary, our OCS for training task Tt during CL can be formulated as:

u∗ =
{
argmax

n

(κ) S (bt,n | Bt) + V
(
bt,n | Bt\bt,n

)
+ τA (bt,n | BC)

∣∣∣ n ∈ {0, . . . , |Bt| − 1}
}
. (4.9)

τ is a hyperparameter that controls the degree of model plasticity and stability. Note that, during the

first task training, we do not have interference from previous tasks, and we select the top-κ instances that

maximize the minibatch similarity and sample diversity. Given the obtained coreset B̂t = Bt[u∗], our

optimization objective reflecting the coreset C, is as follows:

minimize
Θ

1

κ

κ∑
(x̂,ŷ)∈B̂t

ℓ(fΘ(x̂), ŷ) +
λ

|BC |

|BC|∑
(x,y)∈BC

ℓ(fΘ(x), y), (4.10)

where BC is a randomly sampled minibatch from the coreset C and λ is a hyperparameter to balance

the adaptation between the current task and past task coreset. The overall training procedure for

Online Coreset Selection (OCS) is described in Algorithm 9. To the best of our knowledge, this is the first

work that utilizes selective online training for the current task training and incorporates the relationship

between the selected coreset and the current task instances to promote current task adaptation while

minimizing interference with previous tasks.
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Algorithm 9 Online Coreset Selection (OCS)

input Dataset {Dt}Tt=1, neural network fΘ, hyperparameters λ, τ , replay buffer C ← {}, buffer size bound J.

1: for task Tt = T1, . . . , TT do

2: Ct ← {} ▷ Initialize coreset for current task

3: for batch Bt ∼ Dt do

4: BC ← Sample(C) ▷ Randomly sample a batch from the replay buffer

5: u∗ = argmax(κ)

n∈{0,...,|Bt|−1}
S (bt,n | Bt) + V

(
bt,n | Bt\bt,n

)
+ τA (bt,n | BC) ▷ Coreset selection

6: Θ← Θ− η∇fΘ(Bt[u
∗] ∪ BC) with Equation equation 4.10 ▷ Model update with selected instances

7: Ct ← Ct ∪ B̂t

8: end for

9: C ← C ∪ Select(Ct, size = J/T ) with Equation (4.9) ▷ Memorize coreset in the replay buffer

10: end for

4.1.4 Experimental Results

Datasets

We validate OCS on domain-incremental CL for Balanced and Imbalanced Rotated MNIST using a

single-head two-layer MLP with 256 ReLU units in each layer, task-incremental CL for Split CIFAR-100

and Multiple Datasets (a sequence of five datasets) with a multi-head structured ResNet-18 following

prior works [19, 109, 108].

Baselines.

We compare OCS with regularization-based CL methods: EWC [74] and Stable SGD [109], rehearsal-

based CL methods using random replay buffer: A-GEM [19] and ER-Reservior [20], coreset-based methods

using CL algorithms: Uniform Sampling, k-means Features [113] and k-means Embeddings [136], and

coreset-based CL methods: iCaRL [125], Grad Matching [16], GSS [4], ER-MIR [3], and Bilevel Optim [11].

We limit the buffer size for the rehearsal-based methods to one example per class per task. Additionally,

we compare with Finetune, a naive CL method learned on a sequence of tasks, and Multitask, where the

model is trained on the complete data.

Metrics.

We evaluate all the methods on two metrics following the CL literature [19, 108].

1. Average Accuracy (At) is the averaged test accuracy of all tasks after the completion of CL at task

Tt. That is, At = 1
t

∑t
i=1 at,i, where at,i is the test accuracy of task Ti after learning task Tt.

2. Average Forgetting (F ) is the averaged disparity between the peak and final task accuracy after the

completion of continual learning. That is, F = 1
T−1

∑T−1
i=1 maxt∈{1,...,T−1}(at,i − aT,i).

Quantitative Analysis for Continual Learning

Balanced continual learning. Table 4.1 shows the results on the balanced CL benchmarks. First,

observe that compared to the random replay-based methods (A-GEM and ER-Reservoir), OCS shows

19% relative gain in average accuracy, 62% and 79% reduction in forgetting over the strongest baseline

on Rotated MNIST, and Split CIFAR-100, respectively. Second, OCS reduces the forgetting by 38%

and 57% on Rotated MNIST and Multiple Datasets, respectively, over the coreset-based techniques,
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Table 4.1: Performance comparison of OCS and other baselines on balanced and imbalanced continual learning.

We report the mean and standard-deviation of the average accuracy (Accuracy) and average forgetting (Forgetting)

across five independent runs. The best results are highlighted in bold.

Method Rotated MNIST Split CIFAR-100 Multiple Datasets

Accuracy Forgetting Accuracy Forgetting Accuracy Forgetting

B
a
la

n
c
e
d

C
L

Finetune 46.3 (± 1.37) 0.52 (± 0.01) 40.4 (± 2.83) 0.31 (± 0.02) 49.8 (± 2.14) 0.23 (± 0.03)

EWC [74] 70.7 (± 1.74) 0.23 (± 0.01) 48.5 (± 1.24) 0.48 (± 0.01) 42.7 (± 1.89) 0.28 (± 0.03)

Stable SGD [109] 70.8 (± 0.78) 0.10 (± 0.02) 57.4 (± 0.91) 0.07 (± 0.01) 53.4 (± 2.66) 0.16 (± 0.03)

A-GEM [19] 55.3 (± 1.47) 0.42 (± 0.01) 50.7 (± 2.32) 0.19 (± 0.04) − −
ER-Reservoir [20] 69.2 (± 1.10) 0.21 (± 0.01) 46.9 (± 0.76) 0.21 (± 0.03) − −
Uniform Sampling 79.9 (± 1.32) 0.14 (± 0.01) 58.8 (± 0.89) 0.05 (± 0.01) 56.0 (± 2.40) 0.11 (± 0.02)

iCaRL [125] 80.7 (± 0.44) 0.13 (± 0.00) 60.3 (± 0.91) 0.04 (± 0.00) 59.4 (± 1.43) 0.07 (± 0.02)

k-means Features [113] 79.1 (± 1.50) 0.14 (± 0.01) 59.3 (± 1.21) 0.06 (± 0.01) 53.6 (± 1.98) 0.14 (± 0.02)

k-means Embedding [136] 80.6 (± 0.54) 0.13 (± 0.01) 55.5 (± 0.70) 0.06 (± 0.01) 55.4 (± 1.46) 0.11 (± 0.02)

Grad Matching [16] 78.5 (± 0.86) 0.15 (± 0.01) 60.0 (± 1.24) 0.04 (± 0.01) 57.8 (± 1.35) 0.08 (± 0.02)

GSS [4] 76.0 (± 0.58) 0.19 (± 0.01) 59.7 (± 1.22) 0.04 (± 0.01) 60.2 (± 1.00) 0.07 (± 0.01)

ER-MIR [3] 80.7 (± 0.72) 0.14 (± 0.01) 60.2 (± 0.72) 0.04 (± 0.00) 56.9 (± 2,25) 0.11 (± 0.03)

Bilevel Optim [11] 80.7 (± 0.44) 0.14 (± 0.00) 60.1 (± 1.07) 0.04 (± 0.01) 58.1 (± 2.26) 0.08 (± 0.02)

OCS (Ours) 82.5 (± 0.32) 0.08 (± 0.00) 60.5 (± 0.55) 0.04 (± 0.01) 61.5 (± 1.34) 0.03 (± 0.01)

Multitask 89.8 (± 0.37) − 71.0 (± 0.21) − 57.4 (± 0.84) −

Im
b
a
la

n
c
e
d

C
L

Finetune 39.8 (± 1.06) 0.54 (± 0.01) 45.3 (± 1.38) 0.17 (± 0.01) 27.6 (± 3.66) 0.22 (± 0.04)

Stable SGD [109] 52.0 (± 0.25) 0.19 (± 0.00) 48.7 (± 0.64) 0.03 (± 0.00) 29.5 (± 4.09) 0.20 (± 0.02)

Uniform Sampling 61.6 (± 1.72) 0.15 (± 0.01) 51.0 (± 0.78) 0.03 (± 0.00) 35.0 (± 3.03) 0.11 (± 0.03)

iCaRL [125] 71.7 (± 0.69) 0.09 (± 0.00) 51.2 (± 1.09) 0.02 (± 0.00) 43.6 (± 2.95) 0.05 (± 0.03)

k-means Features [113] 52.3 (± 1.48) 0.24 (± 0.01) 50.6 (± 1.52) 0.04 (± 0.01) 36.1 (± 1.75) 0.09 (± 0.02)

k-means Embedding [136] 63.2 (± 0.90) 0.13 (± 0.02) 50.4 (± 1.39) 0.03 (± 0.01) 35.6 (± 1.35) 0.11 (± 0.02)

Grad Matching [16] 55.6 (± 1.86) 0.18 (± 0.02) 51.1 (± 1.14) 0.02 (± 0.00) 34.6 (± 0.50) 0.12 (± 0.01)

GSS [4] 68.7 (± 0.98) 0.18 (± 0.01) 44.5 (± 1.35) 0.04 (± 0.01) 32.9 (± 0.90) 0.13 (± 0.01)

ER-MIR [3] 69.3 (± 1.01) 0.16 (± 0.01) 44.8 (± 1.42) 0.03 (± 0.01) 32.3 (± 3.49) 0.15 (± 0.03)

Bilevel Optim [11] 63.2 (± 1.04) 0.22 (± 0.01) 44.0 (± 0.86) 0.03 (± 0.01) 35.1 (± 2.78) 0.12 (± 0.02)

OCS (Ours) 76.5 (± 0.84) 0.08 (± 0.01) 51.4 (± 1.11) 0.02 (± 0.00) 47.5 (± 1.66) 0.03 (± 0.02)

Multitask 81.0 (± 0.95) − 48.2 (± 0.72) − 41.4 (± 0.97) −
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(a) Average test accuracy (b) First task test accuracy

Figure 4.5: (a) Average accuracy (b) First task accuracy for balanced/imbalanced Rotated MNIST during CL.

demonstrating that it selects valuable samples from the previous tasks. We further illustrate this in

Figure 4.5, where OCS consistently exhibits superior average accuracy and first-task accuracy. Third,

we show the scalability of OCS with larger episodic memory in Figure 4.6. Interestingly, iCaRL shows

lower performance than uniform sampling with a larger memory buffer for Rotated MNIST, while OCS

outperforms across all memory sizes on both datasets. Furthermore, we note that ER-MIR, GSS, and

Bilevel Optim require 0.9×, 3.9×, and 4.2× training time than OCS (see Table 4.5) on TITAN Xp,

showing a clear advantage of OCS for the online streaming scenarios.

Imbalanced continual learning. To demonstrate the effectiveness of OCS in challenging scenarios,

we evaluate imbalanced CL in Table 4.1. We emphasize that compared to balanced CL, OCS shows

significant gains over all the baselines for Rotated MNIST and Multiple Datasets. Notably, it leads to a
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Table 4.2: Performance comparison of OCS and other baselines on varying proportions of noise instances during

noisy continual learning. We report the mean and standard-deviation of the average accuracy (Accuracy) and

average forgetting (Forgetting) across five independent runs. The best results are highlighted in bold.

Method 0% 40% 60%

Accuracy Forgetting Accuracy Forgetting Accuracy Forgetting

Stable SGD [109] 70.8 (± 0.78) 0.10 (± 0.02) 56.2 (± 0.95) 0.40 (± 0.01) 56.1 (± 0.62) 0.40 (± 0.01)

Uniform sampling 79.9 (± 1.32) 0.14 (± 0.01) 74.9 (± 2.45) 0.20 (± 0.03) 68.3 (± 3.68) 0.26 (± 0.03)

iCaRL [125] 80.7 (± 0.44) 0.13 (± 0.00) 77.4 (± 0.60) 0.18 (± 0.01) 71.4 (± 2.63) 0.23 (± 0.03)

k-means embedding [136] 80.6 (± 0.54) 0.13 (± 0.01) 78.5 (± 0.86) 0.17 (± 0.00) 77.5 (± 1.67) 0.26 (± 0.03)

GSS [4] 76.0 (± 0.58) 0.19 (± 0.01) 71.7 (± 0.95) 0.19 (± 0.01) 68.8 (± 1.02) 0.17 (± 0.02)

ER-MIR [3] 80.7 (± 0.72) 0.14 (± 0.01) 76.0 (± 1.34) 0.17 (± 0.01) 73.5 (± 0.94) 0.18 (± 0.01)

OCS (Ours) 82.5 (± 0.32) 0.08 (± 0.00) 80.4 (± 0.20) 0.14 (± 0.00) 80.3 (± 0.75) 0.10 (± 0.01)
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Figure 4.6: Performance comparison on various coreset sizes for balanced/imbalanced continual learning.

relative improvement of ∼ 7% and ∼ 9% on the accuracy, ∼ 11% and 40% reduction on the forgetting

compared to the best baseline for each dataset, respectively. The poor performance of the baselines in

this setup is largely attributed to their lack of current task coreset selection, which results in a biased

estimate degenerating model performance (see Figure 4.9). Moreover, we observe that OCS outperforms

Multitask for complex imbalanced datasets, perhaps due to the bias from the dominant classes and the

absence of selection criteria in Multitask. Similar to balanced CL, OCS leads to superior performance for

larger episodic memory in imbalanced CL (see Figure 4.6).

Noisy continual learning. Next, we evaluate on noisy Rotated MNIST dataset, which is constructed

by perturbing a proportion of instances of the original dataset with Gaussian noise N (0, 1). Table 4.2

shows that the addition of noise significantly degrades the performance on all the baselines. In contrast,

OCS leads to a relative gain of 43% on accuracy, 20% and 35% reduction in forgetting on 40% and 60%

proportion of noisy data. Note that the performance gap is more significant for the higher distribution of

noisy examples, supporting our claim that the similarity and diversity across the training examples in the

coreset play an essential role in task adaptation in continual learning.

Ablation Studies

Effect of gradients. In Table 4.3, we empirically justify the utilization of gradients (Grad-OCS)

compared to the raw inputs (Input-OCS) and feature-representations (Feat-OCS). We observe that Grad-

OCS significantly outperforms Input-OCS and Feat-OCS on balanced and imbalanced CL, demonstrating

that the gradients are a better metric to approximate the dataset.

Effect of individual components. We further dissect Minibatch similarity (S), Sample diversity

(V) and Coreset affinity (A) in Table 4.4. Note that selection using S shows reasonable performance as

the model can select valuable data points; however, it may select redundant samples, which degrades
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Table 4.3: Ablation study for analyzing the effect of

gradients selection for OCS.

Method Balanced Rotated MNIST Imbalanced Rotated MNIST

Accuracy Forgetting Accuracy Forgetting

Input-OCS 72.7 (± 0.47) 0.13 (± 0.01) 50.6 (± 1.74) 0.04 (± 0.00)

Feat-OCS 71.7 (± 0.62) 0.17 (± 0.01) 30.6 (± 0.40) 0.03 (± 0.01)

Grad-OCS 82.5 (± 0.32) 0.08 (± 0.00) 76.5 (± 0.84) 0.08 (± 0.01)

Table 4.4: Ablation study to investigate the impact

of selection criteria S,V, and A on OCS.

Method Noisy Rot-MNIST (60%) Multiple Datasets

S V A Accuracy Forgetting Accuracy Forgetting

✓ − − 64.0 (± 1.18) 0.33 (± 0.01) 56.3 (± 0.97) 0.10 (± 0.02)

− ✓ − 40.1 (± 1.32) 0.06 (± 0.02) 49.8 (± 1.30) 0.12 (± 0.01)

− − ✓ 79.6 (± 0.87) 0.10 (± 0.01) 58.1 (± 0.96) 0.05 (± 0.01)

✓ ✓ − 66.8 (± 1.39) 0.30 (± 0.01) 58.6 (± 1.91) 0.09 (± 0.02)

✓ ✓ ✓ 80.3 (± 0.75) 0.10 (± 0.01) 61.5 (± 1.34) 0.03 (± 0.01)

Figure 4.7: Interpolat-

ion between S and V.

Table 4.5: Running time

on Balanced Rot-MNIST.

Method Training Time

ER-MIR 0.38 h (×0.87)
GSS 1.71 h (×3.89)
Bilevel 1.83 h (×4.17)
OCS (Ours) 0.44 h (×1.00)

Table 4.6: Collaborative learning with rehearsal-

based CL on various datasets with 20 tasks each.

MC-SGD [108] MC-SGD + OCS

Dataset Accuracy Forgetting Accuracy Forgetting

Per-MNIST 84.6 (± 0.54) 0.06 (± 0.01) 86.6 (± 0.42) 0.02 (± 0.00)

Rot-MNIST 82.3 (± 0.68) 0.08 (± 0.01) 85.1 (± 0.27) 0.04 (± 0.00)

Split CIFAR 58.4 (± 0.95) 0.02 (± 0.00) 59.1 (± 0.55) 0.00 (± 0.00)
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Figure 4.8: Randomly picked coreset examples. Top:

Imbalanced Rotated MNIST. Bottom: Noisy Rotated

MNIST with 60% of noisy instances.

Figure 4.9: T-SNE visualization of the selected

samples on Imbalanced Rotated MNIST.

its performance. In addition, V in isolation is insufficient since it can select non-redundant and non-

representative instances. The combination of S and V improves the average accuracy, but it shows a

marginal improvement in forgetting. To further gain insight into S and V , we interpolate between S and

V in Figure 4.7, where we can observe that an optimal balance of S and V (indicated by the arrows) can

further improve the performance of our proposed selection strategy.

Furthermore, A improves the forgetting since the selected candidates have similar gradient direction

to the coreset of the previous tasks maximizing their performance. However, A does not consider the

current task distribution explicitly and depends on the quality of the memorized replay buffer. We observe

that using A in isolation obtains reasonably high performance on simple digit-based domain-incremental

CL problems (e.g., Rotated MNIST) due to its inherent high resemblance among same class instances.

Consequently, suppressing catastrophic forgetting by selective training based on A shows a relatively

high impact rather than selective training based on distinguishing more informative or diverse samples.

In contrast, A in isolation for selection is insufficient for complicated and realistic CL problems such as

imbalanced CL and multiple datasets, and all the three components (S, V, and A) contribute to the

performance of OCS. For Multiple Datasets, selection using only A (58.1%) obtained worse performance

in comparison to S +V +A (61.5%) and S +V (58.6%). Further, selection using S +A (59.4± 2.0%) and

V +A (56.4%± 1.3) also obtained 2.1%p and 5.1%p lower average accuracy than full OCS, respectively.

Further Analysis

Coreset visualization. Next, we visualize the coreset selected by different methods for imbalanced

and noisy rotated MNIST in Figure 4.8. We observe that uniform sampling selects highly biased samples

representing the dominant classes for imbalanced CL and noisy instances for noisy CL. In contrast, iCaRL
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selects the representative samples per class for imbalanced CL; however, it selects noisy instances during

noisy CL. In comparison, OCS selects the beneficial examples for each class during imbalanced CL and

discards uninformative noisy instances in the noisy CL training regime.

T-SNE visualization. We further compare the T-SNE visualization of the selected coreset by Bilevel

Optim, GSS, and OCS in Figure 4.9. We observe that the samples chosen by OCS are diverse, whereas

Bilevel Optim and GSS select the majority of the samples from the dominant classes. We attribute

the representative clusters and diversity in the samples selected by OCS to our proposed S (selects the

valuable samples) and V (minimizes the redundancy among the selected samples) criteria.

Collaborative learning with MC-SGD. We remark that OCS can be applied to any rehearsal-based

CL method with a replay buffer during training. We empirically demonstrate the effect of collaborative

learning with other CL methods in Table 4.6. In particular, we use Mode Connectivity SGD (MC-

SGD) [108], which encourages the mode connectivity between model parameters for continual and

multitask loss and approximates the multitask loss through a randomly selected replay buffer. Note

that OCS leads to a relative gain of 1.2% to 3.4% on accuracy over MC-SGD on Permuted MNIST,

Rotated MNIST, and Split CIFAR-100 datasets. Furthermore, MC-SGD + OCS shows considerably

lower forgetting, illustrating that OCS prevents the loss of prior task knowledge.

Table 4.7: Ablation study for analyzing the selection

with partial gradients in OCS.

Used Blocks

for OCS

Average

Accuracy

Average

Forgetting

Gradients

Usage Ratio

[1, ] 35.72 (± 0.57) 5.45 (± 0.55) 1.6

[1, 2, ] 37.42 (± 0.93) 4.70 (± 0.94) 6.3

[1, 2, 3, ] 36.24 (± 1.09) 4.97 (± 0.88) 25.0

[1, 2, 3, 4] 37.06 (± 0.69) 4.32 (± 0.71) 100.0

[ 2, 3, 4] 35.10 (± 0.33) 4.83 (± 0.95) 98.4

[ 3, 4] 35.47 (± 0.65) 4.85 (± 0.54) 93.7

[ 4] 34.75 (± 1.16) 5.20 (± 0.43) 75.0

OCS with partial gradients. While we con-

sider ResNet-18 as sufficiently deep neural net-

works, our OCS also can be utilized in extremely

deep networks (e.g., ResNet-101) through OCS

selection by computing partial gradients of the

neural network to reduce the computational cost

during online training. This simple modification

is straightforward, and to validate its potential,

we have performed an additional ablation study

on Split TinyImageNet in Table 4.7. ResNet-18

contains a convolutional layer with a first residual

block (we name it ’block 1’) and three consecutive

residual blocks (we name them blocks 2, 3, and 4, respectively). We have evaluated the variants of

OCS which select the coreset based on weights gradients of partial blocks. The first column of the table

describes gradients used in OCS selection. That is, the original OCS uses all gradients of all network

components ([1,2,3,4]).

Surprisingly, we observe OCS using the earlier two blocks (i.e., [1, 2]) show 0.36%p higher performance

while using only the 6.3% of gradients compared to the original OCS. We expect that this specific benefit

of earlier blocks is due to the different roles of blocks in neural networks. It is well known that earlier

layers relatively focus on capturing generic representations while the latter capture class-discriminative

information. Thus, obtaining the coreset that represents the task-general information and preserves

shared knowledge with past tasks is specifically important since generic knowledge is easy to drift and

much more susceptible to catastrophic forgetting.

We believe that further investigation of this observation would definitely provide more useful insights

for future work and enhance the performance of OCS while greatly reducing computational costs.
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4.1.5 Summary

We propose Online Coreset Selection (OCS), a novel approach for coreset selection during online

continual learning. Our approach is modeled as a gradient-based selection strategy that selects represen-

tative and diverse instances, which helps preserve the knowledge of the previous tasks at each iteration.

This paper takes the first step to utilize the coreset for improving the current task adaptation while

mitigating the catastrophic forgetting of previous tasks. Our experimental evaluation of the standard

balanced continual learning datasets against state-of-the-art rehearsal-based techniques demonstrates

the efficiency of our approach. OCS achieves impressive results on various challenging continual learning

scenarios containing class-imbalanced and noisy instances. We further demonstrate the positive effect of

collaborative learning of our selection strategy with existing rehearsal-based continual learning methods.

Our future work will focus on improving the selection strategies and exploring ways to utilize unlabelled

data streams during training.
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4.2 Representational Continuity for Unsupervised Continual

Learning [103]

4.2.1 Motivation

Recently continual learning [152, 181, 137, 20, 3, 67, 173] has gained a lot of attention in the deep

learning community due to its ability to continually learn on a sequence of non-stationary tasks [80, 97]

and close proximity to the human learning process [42]. However, the inability of the learner to prevent

forgetting of the knowledge learned from the previous tasks has been a long-standing problem [104, 45].

To address this problem, a large body of methods [130, 178, 95, 4, 15] have been proposed; however, all

these methods focus on the supervised learning paradigm, but obtaining high-quality labels is expensive

and often impractical in real-world scenarios. In contrast, CL for unsupervised representation learning

has received limited attention in the community. Although [123] instantiated a continual unsupervised

representation learning framework (Curl), it is not scalable for high-resolution tasks, as it is composed

of MLP encoders/decoders and a simple MoG generative replay. This is evident in their limited empirical

evaluation using digit-based gray-scale datasets.

Meanwhile, a set of directions have shown huge potential to tackle the representation learning

problem without labels [54, 22, 47, 23, 25, 180] by aligning contrastive pairs of training instances or

maximizing the similarity between two augmented views of each image. However, a common assumption

for existing methods is the availability of a large amount of unbiased and unlabelled datasets to learn

the feature representations. We argue that this assumption is not realistic for most of the real-time

applications, including self-driving cars [10], medical applications [72] and conversational agents [96]. The

collected datasets are often limited in size during the initial training phase [41], and datasets/tasks change

continuously with time.

To accommodate such continuous shifts in data distributions, representation learning models need to

increment the knowledge without losing the representations learned in the past. With this motivation, we

attempt to bridge the gap between unsupervised representation learning and continual learning to address

the challenge of learning the representations on a sequence of tasks. Specifically, we focus on unsupervised

continual learning (UCL), where the goal of the continual learner is to learn the representations from a

stream of unlabelled data instances without forgetting (see Figure 4.10). To this end, we extend various

existing SCL strategies to the unsupervised continual learning framework and analyze the performance

of current state-of-the-art representation learning techniques: SimSiam [25] and BarlowTwins [180] for

UCL. Surprisingly, we observe that the unsupervised representations are comparatively more robust to

catastrophic forgetting across all datasets and simply fine-tuning the sequence of tasks can outperform

various state-of-the-art continual learning alternatives. Furthermore, we show that UCL generalizes better

to various out-of-distribution tasks and outperforms SCL for few-shot training scenarios.

We demystify the robustness of unsupervised representations by investigating the feature similarity,

measured by centered kernel alignment (CKA) [76] between two independent UCL and SCL models and

between UCL and SCL models. We notice that two unsupervised model representations have a relatively

high feature similarity compared to two supervised representations. Furthermore, in all cases, the two

models have high similarity in lower layers indicating that they learn similar low-level features. Further, we

measure the ℓ2 distance between model parameters [111] and visually compare the feature representations

learned by different SCL and UCL strategies. We observe that UCL obtains human perceptual feature

patterns for previous tasks, demonstrating their effectiveness in alleviating catastrophic forgetting. We
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Figure 4.10: Illustration of supervised and unsupervised continual learning. The objective of SCL is to learn

the ability to classify labeled images in the current task while preserving the past tasks’ knowledge, where the tasks are

non-iid to each other. On the other hand, UCL aims to learn the representation of images without the presence of labels

and the model learns general-purpose representations during sequential training.

conjecture that this is due to their characteristic ability to learn general-purpose features [33], which

makes them transfer better and comparatively more robust to catastrophic forgetting.

To gain further insights, we visualize the loss landscape [93] of the UCL and SCL models and observe

that UCL obtains a flatter and smoother loss landscape than SCL. Additionally, we propose a simple

yet effective technique coined Lifelong Unsupervised Mixup (Lump), which utilizes mixup [183] for

unlabelled training instances. In particular, LUMP interpolates between the current task examples and

examples from previous instances to minimize catastrophic forgetting. We emphasize that LUMP is easy to

implement, does not require additional hyperparameters, and simply trains on the interpolated instances.

To this end, LUMP requires little, or no modification to existing rehearsal-based methods effectively

minimizes catastrophic forgetting even with uniformly selecting the examples from the replay buffer.

We show that LUMP with UCL outperforms the state-of-the-art supervised continual learning methods

across multiple experimental settings with significantly lower catastrophic forgetting. In summary, our

contributions are as follows:

• We attempt to bridge the gap between continual learning and representation learning and tackle the

two crucial problems of continual learning with unlabelled data and representation learning on a

sequence of tasks.

• Systematic quantitative analysis shows that UCL achieves better performance over SCL with sig-

nificantly lower catastrophic forgetting on Sequential CIFAR-10, CIFAR-100, and Tiny-ImageNet.

Additionally, we evaluate out-of-distribution tasks and few-shot training demonstrating the expressive

power of unsupervised representations.

• We provide visualization of the representations and loss landscapes, which show that UCL learns

discriminative, human perceptual patterns and achieves a flatter and smoother loss landscape. Fur-

thermore, we propose Lifelong Unsupervised Mixup (Lump) for UCL, which effectively alleviates

catastrophic forgetting and provides better qualitative interpretations.

4.2.2 Related Work

Continual learning. We can partition the existing continual learning methods into three categories.

The regularization approaches [97, 181, 135, 2] impose a regularization constraint to the objective that

mitigates catastrophic forgetting. The architectural approaches [130, 178, 95, 68] avoid this problem by

including task-specific parameters and allowing the expansion of the network during continual learning.
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The rehearsal approaches [125, 128, 4] allocate a small memory buffer to store and replay the examples

from the previous task. However, all these methods are confined to supervised learning, which limits their

application in real-life problems. [123, 146] tackled the problem of continual unsupervised representation

learning; however, their methods are restricted to simple low-resolution tasks and not scalable to large-scale

continual learning datasets.

Representational learning. A large number of works have addressed the unsupervised learning

problem in the standard machine learning framework. Specifically, contrastive learning frameworks [54,

22, 47, 23, 24] that learn the representations by measuring the similarities of positive and negative pairs

have gained a lot of attention in the community. However, all these methods require large batches and

negative sample pairs, which restrict the scalability of these networks. [25] tackled these limitations

and proposed SimSiam, that use standard Siamese networks [13] with the stop-gradient operation to

prevent the collapsing of Siamese networks to a constant. Recently, BarlowTwins [180] formulated an

objective that pushes the cross-correlation matrix between the embeddings of distorted versions of a

sample closer to the identity matrix. However, all these methods assume the presence of large datasets

for pre-training, which is impractical in real-world applications. In contrast, we tackle the problem of

incremental representational learning and learn the representations sequentially while maximizing task

adaptation and minimizing catastrophic forgetting.

4.2.3 Approach

Preliminaries

Problem Setup We consider the continual learning setting, where we learn on a continuum of data

consisting of T tasks T1:T = (T1 . . . TT ). In supervised continual learning, each task consists of a task

descriptor τ ∈ {1 . . . T} and its corresponding dataset Dτ = {(xi,τ , yi,τ )nτ

i=1} with nτ examples. Each

input-pair (xi,τ , yi,τ ) ∈ Xτ ×Yτ , where (Xτ ,Yτ ) is an unkown data distribution. Let us consider a network

fΘ : Xτ → RD parametrized by Θ = {wl}l=Ll=1 , where RD and L denote D-dimensional embedding space

and number of layers respectively. The classifier is denoted by hψ : RD → Yτ . The network error using

cross-entropy loss (CE) for SCL with finetuning can be formally defined as:

LFinetune
SCL = CE (hψ (fΘ (xi,τ ) , τ) , yi,τ ) . (4.11)

In this work, we assume the absence of label supervision during training and focus on unsupervised

continual learning. In particular, each task consists of Uτ = {(xi,τ )nτ

i=1}, xi,τ ∈ Xτ with nτ examples. Our

aim is to learn the representations fΘ : Xτ → RD on a sequence of tasks while preserving the knowledge

of the previous tasks.

Learning Protocol and Evaluation Metrics Currently, the traditional continual learning strategies

follow the standard training protocol, where we learn the network representations fΘ : Xτ → Yτ on a

sequence of tasks. In contrast, our goal is to learn the feature representations fΘ : Xτ → RD, so we follow

a two-step learning protocol to obtain the model predictions. First, we pre-train the representations on

a sequence of tasks T1:T = (T . . . TT ) to obtain the representations. Next, we evaluate the quality of

our pre-trained representations using a K-nearest neighbor (KNN) classifier [164] following the setup

in [22, 25, 180]. To validate the knowledge transfer of the learned representations, we adopt the metrics

from the SCL literature [20, 109]. Let aτ,i denote the test accuracy of task i after learning task Tτ using
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a KNN on frozen pre-trained representations on task Tτ . More formally, we can define the metrics to

evaluate the continually learned representations as follow:

1. Average accuracy is the average test accuracy of all the tasks completed until the continual learning

of task τ : Aτ = 1
τ

∑τ
i=1 aτ,i

2. Average Forgetting is the average performance decrease of each task between its maximum accuracy

and accuracy at the completion of training: F = 1
T−1

∑T−1
i=1 maxτ∈{1,...,T} (aτ,i − aT,i)

Unsupervised Continual Learning

Continuous representation learning with sequential tasks To learn feature representations,

contrastive learning [22, 23, 54] maximizes the similarity of representations between the images of the

same views (positive pairs) and minimizes the similarity between images of different views (negative

pairs). However, these methods require large batches, negative sample pairs [22, 23], or architectural

modifications [54, 24], or non-differentiable operators [17], which makes their application difficult for

continual learning scenarios. In this work, we focus on SimSiam [25] and BarlowTwins [180], which

tackle these limitations and achieve state-of-the-art performance on standard representation learning

benchmarks.

SimSiam [25] uses a variant of Siamese networks [13] for learning input data representations. It

consists of an encoder network fΘ, which is composed of a backbone network and is shared across a

projection MLP and prediction MLP head h(·). Specifically, SimSiam minimizes the cosine similarity

between the output vectors of the projector and the predictor MLP across two different augmentations

for an image. Initially, we consider Finetune, which is a naive CL baseline that minimizes the cosine-

similarity between the projector output (z1i,τ = fΘ(x
1
i,τ )) and the predictor output (p2i,τ = h(fΘ(x

2
i,τ )) on

a sequence of tasks as follows:

LFinetune
UCL =

1

2
D(p1i,τ , stopgrad(z

2
i,τ )) +

1

2
D(p2i,τ , stopgrad(z

1
i,τ )), (4.12)

where D(p1i,τ , z
2
i,τ ) = −

p1i,τ
∥p2i,τ∥2

·
z2i,τ
∥z2i,τ∥2

,

x1
i,τ and x2

i,τ are two randomly augmented views of an input example xi,τ ∈ Tτ and ∥·∥2 denotes

the ℓ2-norm. Note that the stopgrad is a crucial component in SimSiam to prevent the trivial solutions

obtained by Siamese networks. Due to its simplicity and effectiveness, we chose Simsiam to analyze the

performance of unsupervised representations for continual learning.

BarlowTwins [180] minimizes the redundancy between the embedding vector components of

the distorted versions of an instance while conserving the maximum information inspired from [7]. In

particular, the objective function eliminates the SimSiam stopgrad component and instead makes the

cross-correlation matrix computed between the outputs of two identical networks closer to the identity

matrix. Let C be the cross-correlation matrix between the outputs of two Siamese branches along the

batch dimension and Z1 and Z2 denote the batch embeddings of the distorted views for all images of a

batch from the current task (xτ ∈ Uτ ). The objective function for UCL with finetuning and BarlowTwins

can then be defined as:

LFinetune
UCL =

∑
i

(1− Cii)2 + λ ·
∑
i

∑
j ̸=i

Cij2, where Cij =
∑

B z1B,iz
2
B,j√∑

B (z1B,i)
2
√∑

B (z2B,j)
2
. (4.13)
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λ is a positive constant trading off the importance of the invariance and redundancy reduction terms

of the loss, i and j denote the network’s output vector dimensions. Similar to SimSiam, BarlowTwins is

simple, easy to implement, and can be applied to existing continual learning strategies with little or no

modification.

Preserving representational continuity: A view of existing SCL methods Learning feature

representations from labeled instances on a sequence of tasks has been long studied in continual learning.

However, the majority of these learning strategies are not directly applicable to UCL. To compare with

the regularization-based strategies, we extend Synaptic Intelligence (SI) [181] to UCL and consider the

online per-synapse consolidation during the entire training trajectory of the unsupervised representations.

For architectural-based strategies, we investigate Progressive Neural Networks (PNN) [130] and learn the

feature representations progressively using the representations learning frameworks.

We also formulate Dark Experience Replay (DER) [15] for UCL. DER for SCL alleviates catastrophic

forgetting by matching the network logits across a sequence of tasks during the optimization trajectory.

Notably, the loss for SCL-DER can be defined as follow:

LDer
SCL = LFinetune

SCL + α · E(x,p)∼M
[
∥softmax(p)− softmax(hψ(xi,τ ))∥22

]
, (4.14)

where p = hψτ (x), LFinetune
SCL denotes the cross-entropy loss on the current task (see Equation 4.11) and

random examples are selected using reservoir sampling from the replay-bufferM. Since we do not have

access to the labels for UCL, we cannot minimize the aforementioned objective.

Instead, we utilize the output of the projected output by the backbone network to preserve the

knowledge of the past tasks over the entire training trajectory. In particular, DER for UCL consists of a

combination of two terms. The first term learns the representations using SimSiam from Equation 4.12

or BarlowTwins from Equation 4.13, and the second term minimizes the Euclidean distance between the

projected outputs to minimize catastrophic forgetting. More formally, UCL-DER minimizes the following

loss:

LDer
UCL = LFinetune

UCL + α · E(x)∼M
[
∥fΘτ (x)− fΘ(xi,τ )∥22

]
(4.15)

However, the performance of the rehearsal-based methods is sensitive to the choice of α and often

requires supervised training setup, task identities, and boundaries. To tackle this issue, we propose

Lifelong Unsupervised Mixup in the subsequent subsection, which interpolates between the current and

past task instances to mitigate catastrophic forgetting effectively.

Lifelong unsupervised mixup The standard Mixup [183] training constructs virtual training examples

based on the principle of Vicinal Risk Minimization []. In particular, let (xi, yi) and (xj , yj) denote two

random feature-target pairs sampled from the training data distribution and let (x̃, ỹ) denote the

interpolated feature-target pair in the vicinity of these examples; mixup then minimizes the following

objective:

LMixup(x̃, ỹ) = CE (hψ (fΘ (x̃)) , ỹ) , (4.16)

where x̃ = λ · xi + (1− λ) · xj and ỹ = λ · yi + (1− λ) · yj .

λ ∼ Beta(α, α), for α ∈ (0,∞). In this work, we focus on lifelong self-supervised learning and

propose Lifelong Unsupervised Mixup (Lump) that utilizes mixup for UCL by incorporating the instances

stored in the replay buffer from the previous tasks into the vicinal distribution. In particular, LUMP
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interpolates between the examples of the current task (xi,τ ) ∈ Uτ and random examples selected using

uniform sampling from the replay buffer, which encourages the model to behave linearly across a sequence

of tasks. More formally, LUMP minimizes the objective in Equation 4.12 and Equation 4.13 on the

following interpolated instances x̃i,τ for the current task τ :

x̃i,τ = λ · xi,τ + (1− λ) · xj,M, (4.17)

where xj,M ∼ M denotes the example selected using uniform sampling from replay buffer M. The

interpolated examples not only augment the past tasks’ instances in the replay buffer but also approximate a

regularized loss minimization [184]. During UCL, LUMP enhances the robustness of learned representation

by revisiting the attributes of the past task that are similar to the current task. Recently, [73, 89, 155, 140]

also employed mixup for contrastive learning. Our work is different from these existing works in that our

objective is different, and we focus on unsupervised continual learning. To this end, LUMP successively

mitigates catastrophic forgetting and learns discriminative & human-perceptual features over the current

state-of-the-art SCL strategies (see Table 4.8 and Figure 4.13).

4.2.4 Experimental Results

Experimental setup

Baselines. We compare with multiple supervised and unsupervised continual learning baselines across

different categories of continual learning methods.

1. Supervised continual learning. Finetune is a vanilla supervised learning method trained on a

sequence of tasks without regularization or episodic memory, and Multitask optimizes the model on

complete data. For regularization-based CL methods, we compare against SI [181] and AGEM [19].

We include PNN [130] for architecture-based methods. Lastly, we consider GSS [4] that populates

the replay buffer using solid-angle minimization and DER [15] matches the network logits sampled

through the optimization trajectory for rehearsal during continual learning.

2. Unsupervised continual learning. We consider the unsupervised variants of various SCL baselines

to show the utility of the unsupervised representations for sequential learning. Specifically, we use

SimSiam [25] and BarlowTwins [180], which are the state-of-the-art representational learning

techniques for learning the unsupervised continual representations. We compare with Finetune and

Multitask following the supervised learning baselines, and Si [181], Pnn [130] for unsupervised

regularization and architecture CL methods respectively. For rehearsal-based methods, we compare

with the UCL variant of Der [15].

Datasets. We compare the performance of SCL and UCL on various continual learning benchmarks

using single-head ResNet-18 [55] architecture. Split CIFAR-10 [77] consists of two random classes out

of the ten classes for each task. Split CIFAR-100 [77] consists of five random classes out of the 100

classes for each task. Split Tiny-ImageNet is a variant of the ImageNet dataset [28] containing five

random classes out of the 100 classes for each task with the images sized 64 × 64 pixels.

Training and evaluation setup. We follow the hyperparameter setup of [15] for all the SCL strategies

and tune them for the UCL representation learning strategies. All the learned representations are

evaluated with KNN classifier [164] across three independent runs. Further, we use the hyper-parameters
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Table 4.8: Accuracy and forgetting of the learnt representations on Split CIFAR-10, Split CIFAR-100

and Split Tiny-ImageNet on Resnet-18 architecture with KNN classifier [164]. All the values are measured by

computing mean and standard deviation across three trials. The best and second-best results are highlighted in

bold and underline, respectively.

Method Split CIFAR-10 Split CIFAR-100 Split Tiny-ImageNet

Accuracy Forgetting Accuracy Forgetting Accuracy Forgetting

Supervised Continual Learning

Finetune 82.87 (± 0.47) 14.26 (± 0.52) 61.08 (± 0.04) 31.23 (± 0.41) 53.10 (± 1.37) 33.15 (± 1.22)

PNN [130] 82.74 (± 2.12) − 66.05 (± 0.86) − 64.38 (± 0.92) −
Si [181] 85.18 (± 0.65) 11.39 (± 0.77) 63.58 (± 0.37) 27.98 (± 0.34) 44.96 (± 2.41) 26.29 (± 1.40)

A-gem [19] 82.41 (± 1.24) 13.82 (± 1.27) 59.81 (± 1.07) 30.08 (± 0.91) 60.45 (± 0.24) 24.94 (± 1.24)

Gss [4] 89.49 (± 1.75) 7.50 (± 1.52) 70.78 (± 1.67) 21.28 (± 1.52) 70.96 (± 0.72) 14.76 (± 1.22)

Der [15] 91.35 (± 0.46) 5.65 (± 0.35) 79.52 (± 1.88) 12.80 (± 1.47) 68.03 (± 0.85) 17.74 (± 0.65)

Multitask 97.77 (± 0.15) − 93.89 (± 0.78) − 91.79 (± 0.46) −

Unsupervised Continual Learning

S
im

S
ia
m

Finetune 90.11 (± 0.12) 5.42 (± 0.08) 75.42 (± 0.78) 10.19 (± 0.37) 71.07 (± 0.20) 9.48 (± 0.56)

PNN [130] 90.93 (± 0.22) − 66.58 (± 1.00) − 62.15 (± 1.35) −
Si [181] 92.75 (± 0.06) 1.81 (± 0.21) 80.08 (± 1.30) 5.54 (± 1.30) 72.34 (± 0.42) 8.26 (± 0.64)

Der [15] 91.22 (± 0.30) 4.63 (± 0.26) 77.27 (± 0.30) 9.31 (± 0.09) 71.90 (± 1.44) 8.36 (± 2.06)

Lump 91.00 (± 0.40) 2.92 (± 0.53) 82.30 (± 1.35) 4.71 (± 1.52) 76.66 (± 2.39) 3.54 (± 1.04)

Multitask 95.76 (± 0.08) − 86.31 (± 0.38) − 82.89 (± 0.49) −

B
a
r
l
o
w
T
w
in
s

Finetune 87.72 (± 0.32) 4.08 (± 0.56) 71.97 (± 0.54) 9.45 (± 1.01) 66.28 (± 1.23) 8.89 (± 0.66)

PNN [130] 87.52 (± 0.33) − 57.93 (± 2.98) − 48.70 (± 2.59) −
Si [181] 90.21 (± 0.08) 2.03 (± 0.22) 75.04 (± 0.63) 7.43 (± 0.67) 56.96 (± 1.48) 17.04 (± 0.89)

Der [15] 88.67 (± 0.24) 2.41 (± 0.26) 73.48 (± 0.53) 7.98 (± 0.29) 68.56 (± 1.47) 7.87 (± 0.44)

Lump 90.31 (± 0.30) 1.13 (± 0.18) 80.24 (± 1.04) 3.53 (± 0.83) 72.17 (± 0.89) 2.43 (± 1.00)

Multitask 95.48 (± 0.14) − 87.16 (± 0.52) − 82.42 (± 0.74) −
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Figure 4.11: Evaluation on Few-shot train-

ing for Split CIFAR-100 across different number

of training instances per task. The results are

measured across three independent trials.

(a) Finetune (b) Si (c) Der

Figure 4.12: CKA Feature similarity between two

independent UCL models (red), two independent SCL

models (blue), and UCL and SCL model (green) for

different strategies on Split CIFAR-100 test distribution.

obtained by SimSiam for training UCL strategies with BarlowTwins to analyze the sensitivity of UCL to

hyper-parameters and for a fair comparison between different methods. We train all the UCL methods

for 200 epochs and evaluate with the KNN classifier [164].
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Table 4.9: Comparison of accuracy on out of distribution datasets using a KNN classifier [164] on pre-trained

SCL and UCL representations. We consider MNIST [84], Fashion-MNIST (FMNIST) [165], SVHN [110] as out

of distribution for Split CIFAR-100 and Split CIFAR-10. All the values are measured by computing mean and

standard deviation across three trials. The best and second-best results are highlighted in bold and underline

respectively.

In-class Split CIFAR-10 Split CIFAR-100

Out-of-class MNIST FMNIST SVHN CIFAR-100 MNIST FMNIST SVHN CIFAR-10

Supervised Continual Learning

Finetune 86.42 (± 1.11) 74.47 (± 0.84) 41.00 (± 0.85) 17.42 (± 0.96) 75.02 (± 3.97) 62.37 (± 3.20) 38.05 (± 0.73) 39.18 (± 0.83)

Si [181] 87.08 (± 0.79) 76.41 (± 0.81) 42.62 (± 1.31) 19.14 (± 0.91) 79.96 (± 2.63) 63.71 (± 1.36) 40.92 (± 1.64) 40.41 (± 1.71)

A-gem [19] 86.07 (± 1.94) 74.74 (± 3.21) 37.77 (± 3.49) 16.11 (± 0.38) 77.56 (± 3.21) 64.16 (± 2.29) 37.48 (± 1.73) 37.91 (± 1.33)

Gss [4] 70.36 (± 3.54) 69.20 (± 2.51) 33.11 (± 2.26) 18.21 (± 0.39) 76.54 (± 0.46) 65.31 (± 1.72) 35.72 (± 2.37) 49.41 (± 1.81)

Der [15] 80.32 (± 1.91) 70.49 (± 1.54) 41.48 (± 2.76) 17.72 (± 0.25) 87.71 (± 2.23) 75.97 (± 1.29) 50.26 (± 0.95) 59.07 (± 1.06)

multitask 88.79 (± 1.13) 79.50 (± 0.52) 41.26 (± 1.95) 27.68 (± 0.66) 92.29 (± 3.37) 86.12 (± 1.87) 54.94 (± 1.77) 54.04 (± 3.68)

Unsupervised Continual Learning

S
im

S
ia
m

Finetune 89.23 (± 0.99) 80.05 (± 0.34) 49.66 (± 0.81) 34.52 (± 0.12) 85.99 (± 0.86) 76.90 (± 0.11) 50.09 (± 1.41) 57.15 (± 0.96)

Si [181] 93.72 (± 0.58) 82.50 (± 0.51) 57.88 (± 0.16) 36.21 (± 0.69) 91.50 (± 1.26) 80.57 (± 0.93) 54.07 (± 2.73) 60.55 (± 2.54)

Der [15] 88.35 (± 0.82) 79.33 (± 0.62) 48.83 (± 0.55)) 30.68 (± 0.36) 87.96 (± 2.04) 76.21 (± 0.63) 47.70 (± 0.94) 56.26 (± 0.16)

Lump 91.03 (± 0.22) 80.78 (± 0.88) 45.18 (± 1.57) 31.17 (± 1.83) 91.76 (± 1.17) 81.61 (± 0.45) 50.13 (± 0.71) 63.00 (± 0.53)

Multitask 90.69 (± 0.13) 80.65 (± 0.42) 47.67 (± 0.45) 39.55 (± 0.18) 90.35 (± 0.24) 81.11 (± 1.86) 52.20 (± 0.61) 70.19 (± 0.15)

B
a
r
l
o
w
T
w
in
s Finetune 86.86 (± 1.62) 78.37 (± 0.74) 44.64 (± 2.39) 28.03 (± 0.52) 76.08 (± 2.86) 76.82 (± 0.83) 42.95 (± 0.90) 53.12 (± 0.13)

Si [181] 90.31 (± 0.69) 80.58 (± 0.68) 49.18 (± 0.51) 31.80 (± 0.4) 85.24 (± 0.99) 78.82 (± 0.67) 45.18 (± 1.37) 53.99 (± 0.56)

Der [15] 85.15 (± 2.19) 77.96 (± 0.59) 45.68 (± 0.93) 27.83 (± 0.86) 78.08 (± 1.95) 76.67 (± 0.68) 44.58 (± 1.01) 53.24 (± 0.82)

Lump 88.73 (± 0.54) 81.69 (± 0.45) 51.53 (± 0.41) 31.53 (± 0.36) 90.22 (± 1.39) 81.28 (± 0.91) 50.24 (± 0.95) 60.76 (± 0.87)

Multitask 88.63 (± 1.38) 79.49 (± 0.29) 49.24 (± 2.44) 36.33 (± 0.29) 86.98 (± 1.70) 79.40 (± 1.10) 50.19 (± 0.81) 49.50 (± 0.38)

Table 4.10: ℓ2 distance between UCL parameters after

completion of training.

Model Finetune Si Der MultiTask

Finetune 60.00 (± 1.70)

Si 76.46 (± 0.48) 92.35 (± 0.61)

der 55.60 (± 1.42) 75.54 (± 0.97) 48.76 (± 1.54)

Multitask 61.32 (± 0.59) 79.95 (± 0.40) 57.90 (± 0.86) 61.42 (± 0.78 )

Table 4.11: ℓ2 distance between SCL paraneters after

completion of training.

Model Finetune Si Der MultiTask

Finetune 183.31 (± 0.10)

Si 206.16 (± 0.28) 226.05 (± 0.13)

der 202.61 (± 0.46) 224.78 (± 0.75) 219.06 (± 0.27)

Multitask 258.12 (± 0.26) 277.30 (± 0.69) 271.48 (± 0.45) 314.84 (± 0.92)

Quantitative results

Evaluation on SimSiam. Table 4.8 shows the evaluation results for supervised and unsupervised

representations learned by SimSiam [25] across various continual learning strategies. In all cases, continual

learning with unsupervised representations achieves significantly better performance than supervised

representations with substantially lower forgetting. For instance, Si with UCL obtains better performance

and 68%, 54%, and 44% lower forgetting relative to the best-performing SCL strategy on Split CIFAR-10,

Split CIFAR-100, and Split Tiny-ImageNet, respectively. Surprisingly, Finetune with UCL achieves

higher performance and significantly lower forgetting in comparison to all SCL strategies except Der.

Furthermore, Lump improves upon the UCL strategies: 2.8% and 5.9% relative increase in accuracy and

15% and 57.1% relative decrease in forgetting on Split CIFAR-100 and Split Tiny-ImageNet, respectively.

Evaluation on BarlowTwins. To verify that unsupervised representations are indeed more robust

to catastrophic forgetting, we train BarlowTwins [180] on a sequence of tasks. We notice that the

representations learned with BarlowTwins substantially improve the accuracy and forgetting over SCL:
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Raw Images

T0, T1, T2, T13

Scl-Finetune

Acc:61.08± 0.04

Scl-Si

Acc:63.58± 0.37

Scl-Gss

Acc:70.78± 1.67

Scl-Der

Acc:79.52± 1.88

Ucl-Finetune

Acc:75.42± 0.78

Ucl-Si

Acc:80.08± 1.30

Lump (Ours)

Acc:82.30± 1.35

Figure 4.13: Visualization of feature maps for the second block representations learnt by SCL and UCL

strategies (with Simsiam) for Resnet-18 architecture after the completion of continual learning for Split CIFAR-100

dataset (n = 20). The accuracy is the mean across three runs for the corresponding task.
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Raw Images

T0, T1, T2, T10

Scl-Finetune

Acc:53.10± 1.37

Scl-Si

Acc:44.96± 2.41

Scl-Gss

Acc:70.96± 0.72

Scl-Der

Acc:68.03± 0.85

Ucl-Finetune

Acc:71.07± 0.20

Ucl-Si

Acc:72.34± 0.42

Lump (Ours)

Acc:76.66± 2.39

Figure 4.14: Visualization of feature maps for the second block representations learnt by SCL and

UCL strategies (with Simsiam) for Resnet-18 architecture after the completion of continual learning for Split

Tiny-ImageNet dataset (n = 20). The accuracy is the mean across three runs for the corresponding task.
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T0 T17 T18 T19

Scl-Finetune

Acc: 54.73± 0.25

Scl-Si

Acc: 58.59± 0.20

Scl-Der

Acc: 73.13± 0.38

Ucl-Finetune

Acc: 70.80± 0.40

Ucl-Si

Acc: 76.39± 1.59

Lump (Ours)

Acc: 76.60± 2.70

Figure 4.15: Loss landscape visualization of T0 after the completion of training on task T0, T17, T18, and
T19 for Split CIFAR-100 dataset on ResNet-18 architecture. We use Simsiam for UCL methods.

71.4%, 69.7% and 73.2% decrease in forgetting with Finetune on Split CIFAR-10, Split CIFAR-100 and

Split Tiny-ImageNet respectively. Similarly, we observe that Si and Der are more robust to catastrophic

forgetting; however, PNN underperforms on complicated tasks since feature accumulation using adaptor
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modules is insufficient to construct useful representations for current task adaptation. Interestingly,

representations learned with BarlowTwins achieve lower forgetting for Finetune, Der, and Lump than

SimSiam with comparable accuracy across all the datasets.

Evaluation on Few-shot training. Figure 4.11 compares the effect of few-shot training on UCL and

SCL, where each task has a limited number of training instances. Specifically, we conduct the experimental

evaluation using 100, 200, 500, and 2500 training instances for each task in split CIFAR-100 dataset.

Surprisingly, we observe that the gap in average accuracy between SCL and UCL methods widens with

a decrease in the number of training instances. Note that UCL decreases the accuracy by 15.78%p on

average with lower forgetting when the number of training instances decreases from 2500 to 100; whereas

SCL obtains a severe 32.21%p deterioration in accuracy. We conjecture that this is an outcome of the

discriminative feature embeddings learned by UCL, which discriminates all the images in the dataset and

captures more than class-specific information, as also observed in [33]. Furthermore, LUMP improves the

performance over all the baselines with a significant margin across all few-shot experiments.

Evaluation on OOD datasets. We evaluate the learnt representations on various out-of-distribution

(OOD) datasets in Table 4.9 to measure their generalization to unseen data distributions. In particular,

we conduct the OOD evaluation on MNIST [84], Fashion-MNIST (FMNIST) [165], SVHN [110], CIFAR-

10 and CIFAR-100 [77] using a KNN classifier [164]. We observe that unsupervised representations

outperform the supervised representations in all cases across all the datasets. In particular, the UCL

representations learned with Simsiam, and Si on Split-CIFAR-10 improve the absolute performance

over the best-performing SCL strategy by 4.58%, 6.09%, 15.26%, and 17.07% on MNIST, FMNIST,

SVHN, and CIFAR-100 respectively. Further, Lump trained on Split-CIFAR-100 outperforms Si across

all datasets and obtains comparable performance with Split CIFAR-10 dataset.

Qualitative analysis

Similarity in feature and parameter space. We analyze the similarity between the representations

learned between (i) Two independent UCL models, (ii) Two independent SCL models (iii) SCL and UCL

models using centered kernel alignment (CKA) [76] in Figure 4.12, which provides a score between 0 and 1

measuring the similarity between a pair of hidden representations. For two representations Θ1 : X → Rd1

and Θ2 : X → Rd1 , CKA(Θ1,Θ2) =
||Cov(Θ1(x),Θ2(x))||2F

||Cov(Θ1(x))||F ·||Cov(Θ2(x))||F , where covariances are with respect to

the test distribution. Additionally, we measure the ℓ2 distance [111] between the parameters of two

independent UCL models (see Table 4.10) and two independent SCL models (see Table 4.11). First, we

observe that the representations learned by two independent UCL methods have a high feature similarity

and lower ℓ2 distance compared to the two independent SCL methods, demonstrating UCL representations’

robustness. Second, we note that the representations between any two independent models are highly

similar in the lower layers indicating that they learn similar high-level features, including edges and

shapes; however, the features are dissimilar for the higher modules. Lastly, we see that the representations

between a UCL and SCL model are similar in the lower layers but diverge in the higher layers across all

CL strategies.

Visualization of feature space. Next, we visualize the learned features to dissect further the

representations learned by UCL and SCL strategies. Figure 4.13 shows the visualization of the latent

feature maps for tasks T0 and T13 after the completion of continual learning. For T0, we observe that the
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SCL methods are prone to catastrophic forgetting, as the features appear noisy and do not have coherent

patterns. In contrast, the features learned by UCL strategies are perceptually relevant and robust to

catastrophic forgetting, with LUMP learning the most distinctive features. Similar to T0, we observe

that the UCL features are more relevant and distinguishable than SCL for T13. Note that we randomly

selected the examples and feature maps for all visualizations.

Loss landscape visualization. To gain further insights, we visualize the loss landscape of task T0
after the completion of training on task T0 and T19 for various UCL and SCL strategies in Figure 4.15.

We measure the cross-entropy loss for all methods with a randomly initialized linear classifier for a fair

evaluation of two different directions. We use the visualization tool from [93] that searches the task loss

surface by repeatedly adding random perturbations to model weights. We observe that the loss landscape

after T0 looks quite similar across all the strategies since the forgetting does not exist yet. However,

after training T19, there is a clear difference with the UCL strategies obtaining a flatter and smoother

loss landscape because UCL methods are more stable and robust to the forgetting, which hurts the loss

landscapes of past tasks for SCL. It is important to observe that LUMP obtains a smoother landscape

than other UCL strategies, demonstrating its effectiveness.

4.2.5 Summary

This work attempts to bridge the gap between unsupervised representation learning and continual

learning. In particular, we establish the following findings for unsupervised continual learning.

Surpassing supervised continual learning. Our empirical evaluation across various CL strategies

and datasets shows that UCL representations are more robust to catastrophic forgetting than SCL

representations. Furthermore, we notice that UCL generalizes better to OOD tasks and achieves stronger

performance on few-shot learning tasks. We propose Lifelong unsupervised mixup (Lump), which

interpolates the unsupervised instances between the current task and past task and obtains higher

performance with lower catastrophic forgetting across a wide range of tasks.

Dissecting the learned representations. We conduct a systematic analysis to understand the

differences between the representations learned by UCL and SCL strategies. By investigating the similarity

between the representations, we observe that UCL and SCL strategies have high similarities in the lower

layers but are dissimilar in the higher layers. We also show that UCL representations learn coherent and

discriminative patterns and smoother loss landscape than SCL.

Limitations and future work. In this work, we do not consider the high-resolution tasks for CL.

We intend to evaluate the forgetting of the learnt representations on ImageNet [28] in future work, since

UCL shows lower catastrophic forgetting and representation learning has made significant progress on

ImageNet over the past years. In follow-up work, we intend to conduct further analysis to understand the

behavior of UCL and develop sophisticated methods to continually learn unsupervised representations

under various setups, such as class-incremental or task-agnostic CL.
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4.3 Efficient Video Representation Learning via Masked Video

Modeling with Motion-centric Token Selection [58]

4.3.1 Motivation

Massive amounts of video data flood the web and media every single day with the rapid growth

of portable devices equipped with cameras, such as google glasses, smartphones, UAVs, and robots.

However, direct utilization of user-generated video data for solving target task problems is nontrivial as

the annotation process is time-consuming and expensive. One potentially reasonable approach to tackle

this problem is to learn generic representations from unlabeled video data streams that can transfer

to downstream video-based tasks. Unsupervised Video Representation Learning [40, 121, 51, 122, 116]

methods allow learning spatial and temporal features from input video frames in a self-supervised

manner without any human-annotated clues. A caveat to such pre-training for video tasks is that,

unlike representation learning on image-based tasks capturing static information of objects in instances,

video-based tasks involve temporal causality, where successive frames are strongly correlated in their

semantics.

- 57.1%
- 45.7%

- 44.2%

- 45.7%

- 65.5%
- 45.7%

Figure 4.16: Performance and efficiency of our

VideoMS. (Left) VideoMS significantly outperforms

the SoTA model (VideoMAE [154]) over UCF101 [149],

even at significantly fewer training epochs. We addition-

ally report the results of VideoMAE [154] with a lower

masking ratio (75%) during pre-training. (Right) Our

VideoMS drastically reduces the computational cost dur-

ing pre-training and fine-tuning compared to the SoTA

Masked Video Modeling methods, VideoMAE [154] and

MAE [39].

Recently, a nascent self-supervised learning

paradigm, Masked Image Modeling (MIM) [53,

167], significantly outperforms the previous repre-

sentation learning methods on various downstream

tasks. MIM aims to predict masked regions in

input images by solving a pixel regression prob-

lem, in which the model splits each image into

small patches and generates masks to zero out of

a subset of patches. Most of these approaches use

Vision transformer backbones [34, 100] due to their

compatibility with patchwise operations.

Such a simple and intuitive strategy of MIMs

was also exploited in video representation learning.

Masked Video Modeling (MVM) [154, 39], which

learns to reconstruct randomly masked spatiotem-

poral areas in video clips at each minibatch, has

recently shown impressive performance on a vari-

ety of downstream tasks. Yet, critical challenges

still remain in efficiently utilizing spatiotemporal

information from real-world videos: (1) Tokens (a pair of two temporally successive patches in the same

space) from videos are not equally valuable to reconstruct, as their informativeness depends on adjacent

frames, unlike in image representation learning. (2) Training on the entire video is almost infeasible

without access to a large amount of computes. Prior MVM approaches that reconstruct the whole video

heavily rely on numerous GPUs without considering each object’s changes and redundancy. For example,

VideoMAE [154] takes about 27 hours to pre-train for 800 epochs with a ViT-B backbone using 64

NVIDIA V100 (32GB) GPUs, and MAE [39] takes about 35.8 hours to pre-train for 800 epochs with a

ViT-L backbone using 128 NVIDIA A100 (80GB) GPUs.
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(a) Random [39] (b) Space-only [154] (c) Motion-centric (Ours)

Figure 4.17: Illustration of Motion-centric Token Selection. (a-b) MVM methods forward a few tokens

in arriving video frames into the encoder based on fully random and time-only random selection, and then the

decoder reconstructs entire tokens. (c) Unlike prior works, our proposed motion-centric masking strategy only

recovers key tokens related to moving objects (visible). To do this, we use encoder features extracted from

randomly selected tokens among them (visible and colored).

Effective Batch Size 128 256 512 1028

VideoMAE [154] 258.4 GB 486.4 GB Out-of-Memory Out-of-Memory

VideoMS (Ours) 60.0 GB 91.2 GB 151.2 GB 273.6 GB

Table 4.12: Memory allocation comparison using ViT-

B in the pre-training phase (one node, A100×8 GPUs).

VideoMAE suffers from Out-Of-Memory issue when the

batch size is larger than 256.

To tackle these inefficiencies for efficient

video representation learning, we propose a token-

selective training algorithm, which we refer to as

Motion-centric Token Selection (VideoMS). We

aim to selectively find helpful visual tokens based

on the distance across adjacent tokens in the em-

bedding space to detect significant changes in ob-

jects or status while discarding tokens for redun-

dant frames and meaningless backgrounds as shown in Figure 4.17(c). Thus, VideoMS drastically reduces

memory usage by back-propagating only to a few selected tokens of high importance as shown in Fig-

ure 4.16. Our method uses 5.3 times smaller memory (81% ↓) with the effective batch size of 256 and

allows to use up to 4 times larger batch size using NVIDIA A100 GPUs compared to VideoMAE [154]

(Please see Table 4.12). Further, most existing VRL methods load video frames within uniform distances

in each minibatch clip, neglecting high diversity over frames and noise in uncurated videos. To enhance

frame selection, we extend our tokenwise masking strategy to the frame level, constructing informative

minibatch video clips by inducing to gather frames that contain various changes over time.

• We propose an efficient video self-supervised learning method that promptly selects the most informa-

tive tokens based on the objects’ motion, to avoid wasteful training on uninformative spatiotemporal

regions in the given videos.

• We demonstrate that our proposed method outperforms existing SoTA VRL methods, achieving

remarkable performance improvements while significantly reducing the computational costs and
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memory requirement.

• We further suggest an online video frame selection to instantly and adaptively discard noisy and

redundant frames from incoming videos, leading the model to help learn objects’ dynamic movements.

4.3.2 Related Work

A video stream consists of a massive amount of correlated frames exhibiting spatial and temporal

locality. Annotating video data requires significant human efforts, and thus it is impractical to fully

label all the frames due to extremely high cost from both time and financial standpoints. To capture

spatiotemporal representation from video datasets without any given labels, many recent works have

focused on the video representation learning problem from diverse perspectives.

Contrastive Video Representation Learning One of the main research directions in video rep-

resentation learning is contrastive learning with various constraints [40, 51, 122, 157, 50]. Odd-one-out

learning [40] learns to distinguish odd video subsequences which are composed of permuted order of frames

against normal video streams in a self-supervised fashion. Han et al. [50] introduce the Dense Predictive

Coding (DFC) framework for video self-supervised learning that predicts future frame representation from

current spatiotemporal features from 3D-Resnet. They adopt a modified contrastive loss, considering

pairs with semantic, spatial, and temporal negatives. Motivated by an observation that the human visual

system can rapidly and precisely distinguish different motions, Wang et al. [157] propose a new video

representation learning method that model learns to predict video pace given a few clustered speed

candidates. CoCLR [51] and CVRL [122] tackle video representation learning by proposing modified

InfoNCE [115] losses. On the other hand, CoCLR collaboratively trains RGB and optical flow models

with shared positives, and CVRL carefully utilizes various augmentation technologies which are crucial

for capturing spatiotemporal representation from video data.

Masked Video Modeling Self-supervised learning with Masked Image Modeling (MIM) [53, 167, 66]

has recently become a popular alternative to contrastive learning for its ability to learn rich representations

without having to define negative examples. MIM aims to learn image representations by solving

pixel regression problems in regions of an image that are zeroed out through random [53, 167] or

attention-based [66] masking strategies. Inspired by MIM, several recent works on video representation

learning [189, 159, 154, 39] present spatiotemporal masking strategies for representation learning given

video streams. To capture spatial representation and temporal dynamics for unsupervised video streams,

MAE [39] and VideoMAE [154] extend a masked image autoencoder to mask partial regions in arriving

video clips via random and space-only random sampling, respectively. They find that spatiotemporal

inductive bias in video clips helps a decoder predict input pixels in masked regions, allowing a higher

masking ratio (∼ 90%) than MIM (∼ 60% [167] and ∼ 75% [53]) on image self-supervised learning.

BEVT [159] proposes to jointly train an image-level masked autoencoder and a masked video modeling

method by sharing weights of the encoder, formulated with Video Swin [101]. They resort to random

sampling given spatiotemporal inductive bias, which can be a good approximator with stochasticity

during data-driven training. Nevertheless, selecting random spatiotemporal tokens to reconstruct for

masked video modeling is inefficient since embedded tokens in video frames are not equally important,

especially since the informativeness of each token is affected by the adjacent frames.
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Input Selective Training As training benchmark datasets often have massive scales and contain a lot

of redundant and less meaningful instances, various approaches [176, 38, 11, 117] have been developed

to utilize only the important instances among entire datasets. A few works focus on instance-level

selection for training. Borsos et al. [11] presents a bilevel optimization method to select coreset from

arriving stream data. OCS [176] proposes a gradient-based coreset selection criterion that selects only

the beneficial instances for a task among incoming inputs, dropping redundant and noisy instances in

an online fashion. Several recent works have discussed patch selection techniques for efficient image

recognition with Vision Transformers (ViT). AdaVit [107] introduces parametric decision networks for

patch/head/block selection for training ViT. ATS [38] samples meaningful tokens based on the significant

score, computed by multiplication of attentions and value matrices. AttMask [66] and A-Vit [171] adopt

parameter-free token masking strategies utilizing the average of multi-head attentions. However, those

methods have no means to capture the temporal relatedness across frames in video tasks. Very recently,

Wang et al. [158] propose an efficient fine-tuning framework for video tasks that sequentially perform

temporal and spatial token selection given pre-trained ViT backbones. They introduce a lightweight

scorer network to learn the importance score at each token and select the most informative regions in

incoming videos. Park et al. [117] suggest the greedy K-center search that iteratively finds the most

distant patches in the geometrical space from video clips. These approaches limit their selection processes

to fine-tuning and are not suitable for pre-training. On the other hand, our proposed method, VideoMS,

drastically reduces the required computational cost and memory from both stages through motion-centric

token selection.

4.3.3 Approach

We first introduce Masked Image Modeling (MIM) for image representation learning and then extend

it to our video representation learning scheme, Masked Video Modeling (MVM). Then we discuss several

crucial challenges in recently proposed masked video modeling methods.

Masked Image Modeling

Learning to reconstruct intentionally corrupted data with masking is broadly utilized as means

of representation learning in Natural Language Processing [30, 147, 48, 148] and has demonstrated its

efficacy and power in broad research problems. In vision tasks, Masked Image Modeling [53, 167] aims to

learn representations of the input images by solving the regression problem in which a model predicts

RGB pixel values in randomly zeroed patch regions in images. The model first splits a high-resolution

input image into equally-sized square patches and fills the values of a few patches to be zeros according to

a pre-defined masking ratio. A transformer encoder extracts visual features from unmasked patches with

positional information, and a decoder tries to reconstruct the original input images by predicting the

RGB values of missing image patches from encoded features. Let a self-supervised model f be formulated

into an encoder-decoder framework f(·) = D(E(·)). Given the dataset x = {xi}Ni=1,xi ∈ RC×H×W with

the number of instance N , the channel C, the height H, and the width W , the objective function is

formulated as follows:
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ℓ (x) =
1

N

N∑
i=1

∥f(mi ⊗ ki;W)−mi⊗xi∥p

=
1

N

N∑
i=1

∥D (E (mi ⊗ ki;WE) ;WD)−mi⊗xi∥p ,

where ki = Conv2d(xi;w, s) ∈ RJ×dk . (4.18)

where ki indicates a dk-dimensional patch embedding vector for xi, obtained by a convolutional layer

parameterized by w with a stride s. Further, J =
⌊
H
s

⌋
·
⌊
W
s

⌋
denotes the number of patches per image

and ∥ · ∥p denotes p-norm. WE and WD is a set of weights in the encoder and decoder, respectively. ⊗
is a dimensionality-preserving vector-matrix multiplication operation. A mask mi ∈ {0, 1}J is drawn

by the binary distribution B with a probability of ρ without replacement, that is |mi| = [J · ρ]. After

self-supervised pre-training to minimize Equation 4.18, the encoder transfers the learned representations

to various downstream tasks.

Masked Video Modeling

The dominant approach to video representation learning approach has been contrastive learning, but

the recent success of MIM has led to a breakthrough in effectively capturing spatiotemporal information

from the arriving video stream, which we call Masked Video Modeling [154, 167]. Let v ∈ R2τ×C×H×W

be a short clip consisting of 2τ successive frames from the entire video. The model aims to reconstruct

partially masked frames in v, guided by spatial and temporal relationships between tokens in adjacent

frames. The encoder takes tokenized embedding vectors from a pair of successive frames using a 3D

convolutional operation. Let ki be an i-th spatiotemporal embedding vector for a pair of two frames

v[2i : 2i+ 1]. Given v, we reformulate the loss function of Masked Video Modeling as follows:

ℓ (v) =

τ−1∑
i=0

∥fW(mi ⊗ ki)−mi ⊗ v[2i : 2i+ 1]∥p ,

where m = G (J, ρ, τ) ∈ {0, 1}τ×J , (4.19)

where G(·) is an arbitrary random masking function depending on the specific policy, for example, random

(or agnostic) and space-only (or tube) masking techniques, illustrated in Figure 4.17 (a) and (b).

Unlike the samples from the image dataset, which are permutation-invariant as they are independent of

each other, consecutive frames from the video stream inherently have a strong correlation and redundancy.

Thus, masked video modeling can enjoy more spatiotemporal inductive bias from other adjacent frames

in the input clip, achieving good reconstruction quality even with lessened hints (i.e., a proportion of

unmasked tokens). Indeed, MVM allows a much higher masking ratio 1−ρ per video against MIM methods.

This property is advantageous because masked modeling with a higher masking ratio significantly reduces

computations when training the encoder-decoder framework.

Challenges in Masked Video Modeling

Recently proposed masked video modeling methods capture meaningful representations from pre-

training videos via randomly masking spatiotemporal tokens from input clips. Random sampling-based
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Figure 4.18: Overview of proposed Motion-centric Token selection (VideoMS). We generate the mask

by computing the embedded feature distance between adjacent tokens in the time dimension. Our motion-centric

masking generator selects tokens with a large disparity with the paired ones in the previous time dimension,

which indicates that they include rich motion features. And the model focuses more on learning spatiotemporal

representation and drastically saves computational costs by reconstructing only sparsified motion-centric videos.

masking strategies are reasonable for curated and distributionally-stable video datasets. Yet, there is

plenty of room for further development to make the model much more robust and computation-efficient.

Here, we summarize two major limitations in the random sampling-based Masked Video Modeling

scenario: (1) Tokenized image patches from a video clip are not equally important. At each iteration,

MVM methods determine which tokens to mask according to specific random selection strategies (e.g.,

random, space-only, time-only, ...). Yet, the relative amount of information in each token highly depends

on the position of the informative objects and the correlation across patches within adjacent frames, which

renders most of the tokens highly uninformative or redundant. (2) MVMs uniformly collect discretized

frames from video streams to construct minibatch clips. Real-world videos may include noisy and highly

redundant frame sequences, often uninformative or even detrimental in representing temporal causal

relationships and features of moving objects. However, the uniform sampling of video frames results in

a dissipation of computational and memory resources in video representation learning. They consume

massive training budgets in memory occupancy and suffer from slow convergence speed (e.g., training

3, 200 and 4, 800 epochs on UCF101 [149] and HMDB51 [79], respectively, in VideoMAE [154]). These

challenges further exacerbate the problem when applying masked video modeling on uncurated real-world

videos such as first-person-view videos[46]. To this end, determining which frames and spatiotemporal

tokens to recover is crucial for practical and efficient video representation learning.

Motion-centric Token Selection for Efficient Masked Video Modeling

Inspired by the challenges in recently proposed masked video modeling methods [154, 39], we propose

a novel and efficient video representation learning scheme based on Masked Video Modeling with Motion-

centric Token Selection, dubbed VideoMS. We first explain our motion-centric token selection strategy

for MVM. We assume that informative tokens include significant dynamics in the states or movements

of objects over time and exclude the most uninformative tokens, which are hardly related to the user’s

attention or objectives in videos, from the training procedures. We further tackle the training over

uncurated and challenging video streams by adaptively selecting input frames based on the amount of
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information on objects’ movements.

Mask Generation based on Spatiotemporal Token Embedding Distance

Valuable spatiotemporal information in the video streams mainly comes from actively moving objects

rather than from static backgrounds. Thus, we aim to learn self-supervision on unsupervised video

datasets from only a few crucial regions based on the objects’ motions. Let ki be a token embedding of a

pair of 2ith and (2i+ 1)th frames from an input video clip v ∈ R2τ×C×H×W , where an index 0 ≤ i < τ .

When ki+1,j indicates the jth token embedding of ki+1, we compute the importance Ii+1,j of the token

ki+1,j by computing the distance from the token embedding of the same spatial position in the previous

time step, ki,j :

Ii+1,j = S (ki+1,j ,ki,j) ,

where ki = Conv3d(v[2i : 2i+ 1];w),
(4.20)

S(·, ·) indicates a distance function, such as Euclidian distance, negative Cosine Similarity, and negative

Centered Kernel Alignment (CKA) [27]. Throughout this paper, we use the ℓ2 norm for the distance

function, which is simple yet empirically performs well. After computing the change in spatial information,

which means the informative tokens as the video progresses, we perform a two-step mask sampling. Given

v, the model determines the token embedding vectors with the highest importance ratio of ρpre based on

Equation 4.20. This process is called motion-centric masking generation (Depicted in Figure 4.18) and we

only use 30% (ρpre = 0.3) of the total of τ × J token embeddings for pre-training on UCF101 [149] and

HMDB51 [79]. Since only the selected embedding vectors k̃ go through the encoder-decoder frameworks,

this will drastically reduce the computational cost during training (Please see Figure 4.17 (c) and

’Sparsified Video’ in Figure 4.18). Second, we generate binary masks via random sampling for k̃ and

the model forwards drawn embedding vectors with the ratio of ρpost into the encoder. A corresponding

decoder predicts RGB pixels on all embedding vectors k̃i ∈ k̃ from the encoder output features. We set a

high masking ratio in general, ρpre · ρpost = 0.1, to follow the settings of our MVM baselines. To this end,

the objective function of our VideoMS is formulated as follows:

argmin
W,w

N∑
n=1

τ−1∑
i=0

∥∥∥fW(mn
i ⊗ k̃n

i )−mn
i ⊗ṽn[2i : 2i+ 1]

∥∥∥
F

where mn=G ([J · ρpre], ρpost, τ) ∈ {0, 1}τ×[J·ρpre].

(4.21)

We omit the positional embedding term for notational simplicity. Whereas earlier MVM works used a

fixed masking ratio per video cues for self-supervised training, our approach allows a dynamic masking

rate for each frame by design based on the occupancy of essential tokens. As shown in Figure 4.20, each

video frame contains a different amount of valuable spatiotemporal information, and our dynamic masking

strategy enables the model to focus on learning the essential representation in a holistic view from arriving

video clips. We remark that our proposed masking strategy can be applied to video representation learning

and the pre-trained model can be utilized to solve diverse downstream video tasks with a negligible

additional computational cost. Furthermore, we can adapt our masking strategy during fine-tuning that

selects motion-centric tokens from incoming videos and only processes them for solving downstream

task problems. We find that removing unimportant tokens is crucial for both phases, obtaining more

meaningful representations and thus achieving superior video downstream task performances. (Please see

Table 4.14).
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Figure 4.19: Illustration of our proposed adaptive frame selection. We dynamically sample the given video

by utilizing our Motion-centric Masking and learn fluent spatiotemporal representation in non-static sampled

frames.

Adaptive Frame Selection Encouraging Model to Temporal Clip Causality

Real-world video streams, especially egocentric first-person videos, may contain many redundant

frames and also often include non-useful intermediate clips, such as temporally glancing at uninspiring

walls, grounds, or skies, that interfere with estimating a causality of the user’s or cameraman’s attention.

However, most video-based learning methods construct minibatch clips by sampling evenly spaced frames

from arriving videos. At each training iteration, a model selects a random frame in each video and collects

τ successive frames in total with the same stride. This approach is reasonable for well-curated video

benchmark datasets [71, 149] containing only information-dense frames with fixed viewpoints; however, it

is unsuitable for uncurated real-world videos, which are more likely to have redundant and overlapped

frames that the masked-video model can easily reconstruct.

To overcome the limitation, we propose to adaptively discard uninformative frames in the arrival

video and build causal clips that represent the most crucial behaviors of the objects. We illustrate

a simple overview of our adaptive frame selection in Figure 4.19 and visualize the sampled results in

Figure 4.21. We first select evenly spaced [α · τ ] frames as candidates, α times larger than the input

clip size τ , where α > 1. We count the number of chosen tokens ci for the 2ith and (2i+ 1)th frames

based on our motion-centric selection. Then, the model iteratively trains on the input clip by drawing

τ frames from [α · τ ] candidates without replacement, with a probability of ci∑
i ci

that the paired 2ith

and (2i+ 1)th frames are drawn. The model trains video clips with a limited length at each iteration

since longer clips require massive computations and memory. Therefore, we remark that adaptive frame

selection is crucial to better capture causality in the arrival video, as the model can observe longer video

fragments while avoiding redundant frames.

4.3.4 Experimental Results

Experimental Settings

We validate our VideoMS method on multiple video datasets: UCF101 [149], HMDB51 [79], and

Ego4D [46]. UCF101 and HMDB51 are mainly used datasets for video action recognition, which consist of

9.5k/3.5k and 3.5k/1.5k train/val videos, respectively. We evaluate our adaptive frame selection strategy
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(a) fixed and static (b) fixed and dynamic (c) changing and messy

Figure 4.20: Examples of Motion-centric Token selection. We show the original video frames (left),

Motion-centric masking results (middle), and obtained importance heatmaps (right) on UCF101 [149] ((a) and

(b), ρpre = 0.3) and Ego4D [46] ((c), ρpre = 0.5) datasets. Curated fixed-view (third-person view) videos, (a)

and (b), show narrow and concentrated motion information as shown in their heatmaps, whereas motion cues in

egocentric videos (c) are distributed and contain multi objects.

on the Ego4D dataset, which consists of egocentric videos containing raw and uncurated people’s daily

lives, by applying it during pre-training. We validate our methods through the Object State Change

Classification (OSCC)1 task from Ego4D. Given 8-second videos, OSCC classifies whether the object’s

state has changed due to interaction with a camera wearer.

Implementation details

We follow the implementation details and experimental settings from prior works [39, 154] for fair

comparisons. We set the size of an input clip τ = 16, tokenization size 2× 16× 16, and the fixed sampling

stride of 4 for UCF101, and 2 for HMDB51, respectively. For our proposed method, VideoMS, ρpre is

set to 0.3 and 0.6 for pre-training and fine-tuning, respectively, and we simply adopt Joint Space-Time

Attention [8].

Quantitative Evaluation

We first extensively compare our proposed method against strong VRL baselines. We pre-train

the VRL methods over benchmark datasets without labels and report the fine-tuning performance

on the same datasets in Table 4.13. Our masked video modeling with motion-centric token selection

achieves superior fine-tuning performance against baselines across all benchmark tasks. Specifically, it

outperforms the best baseline by 2.1%p ↑ on UCF101 and 3.2%p ↑ on HMDB51, which demonstrates

the effectiveness of focusing on the objects’ motions for video representation learning. For the UCF101

dataset, we visualize the convergence plot of VideoMS in Figure 4.16 Left, which shows that it reaches a

higher fine-tuning performance than VideoMAE [154] by pre-training at only 800 epochs. We provide

masked input examples with their importance heatmaps through our proposed motion-centric masking

in Figure 4.20. Our masking strategy enables the model to capture the most critical tokens containing

static and dynamic moving of objects (e.g., doing wall push up (Figure 4.20 (a)) and playing ping pong

(Figure 4.20 (b)). Furthermore, our masking strategy captures informative objects even with the rapid

change of the view in the first-person videos, as it masks out objects which are crucial for understanding

1https://github.com/EGO4D/hands-and-objects/tree/main/state-change-localization-classification
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Method Backbone Extra data Frames
Top-1 Acc.(%)

UCF101 HMDB51

OPN [88] VGG UCF101 N/A 59.6 23.8

VCOP [169] R(2+1)D UCF101 N/A 72.4 30.9

CoCLR[51] S3D-G UCF101 32 81.4 52.1

Vi2CLR[32] S3D UCF101 32 82.8 52.9

CoCLR[51] S3D-G K400 32 87.9 54.6

Vi2CLR[32] S3D K400 32 89.1 55.7

VideoMAE [154] ViT-B ✗ 16 91.3 62.6

VideoMS(Ours) ViT-B ✗ 16 93.4 65.8

Table 4.13: Comparison to state-of-the-art meth-

ods on UCF101 and HMDB51. We outperform the

previous method, including the masking-based video

model, without using the pre-training step on a large-

scale dataset. These results are drawn from [32] and

[154].

Method ρpre top-1 GFLOPs

MAE [39] - - 46.10

VideoMAE† [154]
- 91.25∗ 57.50

- 90.80∗∗ 35.48

Ours

0.5 90.91 23.43

0.4 91.51 21.54

0.3 91.56 19.81

0.2 90.80 18.22

Ours† 0.3 93.39 19.81

Method ρpre top-1 GFLOPs

MAE [39] - - 180.6

VideoMAE†[154] - 91.25 180.5

Ours

1.0 89.71 180.5

0.8 90.17 137.5

0.7 91.25 117.3

0.6 91.56 98.1

0.5 91.48 79.8

Ours† 0.6 93.39 98.1

Table 4.14: The rate of Motion-centric Masking

at pre-training (Left) and fine-tuning (Right)

on UCF101. We highlight the default motion-centric

masking rate (ρpre) as red texts. We basically pre-train

our model 800 epochs, but also report the results with

3,200 pre-training epochs following [154], denoted by †.
∗ and ∗∗ denotes the results with 75% and 90% masking,

respectively.

the camera wearers’ attention (Figure 4.20 (c)), while not attending to backgrounds such as walls and

floors.

The Impact of Motion-centric Token Selection One of our major contributions is the significantly

enhanced computational efficiency during VRL, as we process a few latent vectors in the decoder to

reconstruct only the motion-activated tokens in the given videos according to the motion-centric masking

ratio ρpre. We set ρpre to 0.3 so that our VideoMS reconstructs the 30% of the essential spatiotemporal

regions focusing on objects’ movements and behaviors, from a sparsified video clip, which reduces 65.5%

of GFLOPs at the pre-training phase (Please see Figure 4.16 Right and Table 4.14 Left). Additionally, as

reported in Table 4.14 Right, our approach can reduce the computational overhead at the fine-tuning phase,

which is practically useful when transferring the learned representation learning model to downstream

video tasks.

Next, we emphasize that our motion-centric masking is also applicable when solving video-based

downstream tasks. We process only 60% of tokens (ρpre = 0.6) of the given video during fine-tuning.

Surprisingly, our motion-centric masking for supervised downstream tasks gains increased performance

than our variant without masking on the fine-tuning tasks (ρpre = 1.0) using only about 55% of GFLOPs,

as shown in Table 4.14 Right. The results support our hypothesis that video data often contain redundant

information and our selective video learning using the proposed masking strategy successfully captures

essential space-time regions in video inputs, allowing us to focus more on learning spatiotemporally

meaningful features. The fine-tuning masking ratio is higher than the ratio at the pre-training stage,

showing that the model uses more information to fully exploit the task-relevant cues from the given

videos compared to pre-training, which aims to obtain general information.

Also, we examine the impact of the informativeness of the tokens in Table 4.15. We selectively learn

informative tokens by calculating the distance between tokens in adjacent frames in the embedding space,

as the tokens farther away from adjacent frames contain less redundant information. When we reversely

select near-distance tokens, it drastically decreases the accuracy in pre-training and fine-tuning, obtaining

the worst performance when reversely selecting informative tokens in both phases.
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Figure 4.21: Qualitative Motion-centric Sampling results. We dynamically sample the given video

(24 frames of the first row) by probability sampling the frames that have fluent spatiotemporal features (light

blue-boxed frames). Without adaptive sampling, the sampled frames (gray-boxed frames) would be highly similar

to each other.

Adaptive Frame Selection for Uncurated Video Streams VRL aims to capture spatiotemporal

features in incoming videos. But when real-world videos include many redundant scenes over a long time,

the model may waste time and computations by learning on meaningless frames, which also can lead

to poor local optima due to bias and catastrophic forgetting. To overcome the limitation, we adopt the

ratio of motion-centric sampling α to focus on the frames with larger motions across frames. Figure 4.21

provides examples that our sampling method takes various frames and ignores redundant frames in the

given video during pre-training. As reported in Table 4.16 Left, downstream task performance with

adaptive frame selection results in superior performance to baselines. By constructing the given videos to

have fluent motion information, our model focuses more on learning the core part of the video selected by

our motion-centric masking ratio ρpre. Furthermore, we compare our method to recent SoTA methods

over OSCC dataset in Table 4.16 Right. Our model pre-trains OSCC without labels and fine-tunes it

to classify whether the object’s state has changed. With only visual information, we outperform the

previous SoTA method Egocentric VLP [98], which uses visual and text information, by 2.3%p ↑.
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Method
Motion-centric Masking FT Acc.

Pre-train Fine-tune top-1

VideoMS (Ours)

ascending ascending 60.93

ascending descending 73.49

descending ascending 75.60

descending descending 91.56

Table 4.15: The impact of informative-token

selection. Fine-tuning (FT) performance when the

model prioritizes selection with far-distance (descending)

or near-distance (ascending) embedded tokens during

pre-training and fine-tuning.

α Acc. (%)

- 73.17

1.3 73.54

1.5 73.85

1.8 73.79

2.0 73.80

Method Modality Acc. (%)

Egocentric VLP [98] V+T 73.9

SViT [35] V 69.8

TarHeels [60] V 70.8

VideoMS (Ours) V 76.2 (+5.4%p)

Table 4.16: Effect of Motion-centric Sampling

ratios (Left) and Comparison to public SoTA

methods for OSCC on val set (Right). We set

the default motion-centric sampling rate (α = 1.5) and

report fine-tuning accuracy. Pre-trained data modalities

from the OSCC dataset ‘V’ and ‘T’ refers to visual and

text.

Figure 4.22: More Examples of Motion-centric Token selection. We show the original video frames in

the first row, Motion-centric masking results in the second, third, and fourth row by varying the ρpre to 0.5, 0.25,

and 0.15, respectively, and obtained importance heatmaps in the last row on UCF101 [149] dataset.
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Figure 4.23: More Examples of Motion-centric Token selection. We show the original video frames in

the first row, Motion-centric masking results in the second row, and obtained importance heatmaps in the last

row on UCF101 [149] dataset. ρpre is set to 0.3 in this example.

Further Visualizations of motion-centric masking We further visualize our masking results in

Figure 4.22 for deeper understanding. The first sample is similar in Figure 4.20 (b) but changes the ρpre

from 0.5 to 0.15. The masked result shows that our masking strategy could be better and save more

computational costs if the view is fixed and the moving object is few. In Figure 4.23, the masked results

in frames of the first to fourth show that our masking strategy wrongly captured the blue line of each

frame’s upper regions as informative tokens in the given video. As the heatmaps show that those tokens

are relatively low informative than the two skaters in the video, it still makes sense that our masking

strategy can successfully capture the informative tokens in the given video.

4.3.5 Summary

In this paper, we propose a simple yet efficient parameter-free token/frame selection method for

masked video representation learning. Our method is based on the intuition that not all tokens in the given

video are equally informative. We adaptively select the most useful spatiotemporal informative tokens

based on objects’ moving and train only crucial motion-centric tokens with the sparsified video clips,

drastically reducing memory allocation and computational cost. In addition, we propose a frame selection

technique to construct input video data by sampling incoming frames with a probability proportional to

the degree of the occupancy of motion-centric tokens. This strategy can be useful for video representation

learning with uncurated videos such as egocentric videos from first-person cameras. The experimental

results show that our method is significantly more efficient in computations and memory, reaching the

target performance with a much smaller number of training epochs than the baselines and achieving

substantially higher performance when trained for the same number of epochs.
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Chapter 5. Conclusion and Future Work

So far, I have addressed critical challenges of deploying the On-device, Online Continual Learning

framework for the real world, particularly focused on sequential training of a course of discrete image-based

tasks. However, the world is continuous, and multiple sensory information persistently arrives over the

lifetime. Similarly, the incoming data stream in portable devices is a form of egocentric videos containing

dynamically-changing perspectives and domains depending on user-centered attention and causality.

Beyond deploying incremental models for image classification tasks, I aim to understand the present

circumstances from incoming input streams and anticipate future user actions or environmental changes

by actively utilizing the episodic memory learned from the past. Ultimately, machines can evolve to

understand semantics and estimate the physical world/wearer’s intentions. I briefly discuss my future

research directions in the following sections.

5.1 Audio-video-text Multimodal Video Understanding

(a) Sparse Multimodal Correlation between Audio

and Video Frames

(b) Causality-based Mixed-modal Buffer Selection

Figure 5.1: (a) Multimodal Video Understanding is challenging since the data includes sparse multimodal

connectivity, and the model should store only related multimodal pairs in the replay buffer for future training.

(b) the model captures the entanglements of multimodal representations using contrastive learning,

only memorizing highly correlated pairs guided by speaker predictions from different domains.

Though most continual learning literature is restricted to solving single-modal problems in a vision

or language domain, real-world egocentric videos obtained by on-device AIs often contain audio-video

multimodality and occasional text information (i.e., captions). However, this challenging scenario raises

several crucial problems. Let’s take a simple example. A man calls a friend while cleaning his room.

During the call, 1) The view of a man and calling sounds are only sometimes meaningful.

Many intermediate video/audio clips are composed of meaningless noise. Training all of the arriving data

streams is therefore not helpful. 2) Incoming visual and acoustic information are not always

correlated. Temporal video clips or frames with corresponding audio can be highly correlated, and in

some others, they are still important in some sense yet irrelevant to each other (Please see Figure 5.1 (a).

3) The on-device agent should preserve and improve the prior knowledge while training new

input streams every second.

I aim to tackle the problems of multimodal video understanding for semantic/episodic memory

and future forecasting [46], to understand challenging multimodal environments around the embedded
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machines, and construct incrementally improving perception from multiple-modal senses like humans. I

suggest a new direction with causality-based input selective training and mixed-modal experience replay,

described in Figure 5.1 (b). Real-world videos include highly sparse correlations among multiple modes,

and simple training of all current incoming modalities is unsuitable for the objective. Transferring only

correlated multimodal features across a long period is crucial to prevent the model from training unfactual

multimodal relationships and adapting long-term memory for sustainable AGI. Motivated by my prior

works, Online Coreset Selection [176] and Motion-centric Token Selection [58], the model learns to project

the audio/video representations in the feature embedding space and captures accurate relationships

between features across different mode inputs. It performs multimodal self-supervised contrastive learning,

allowing selective multimodal knowledge transfer and weight sharing if correlated. Also, the model finds

strongly correlated input pairs from different modes to store them in a replay buffer for long-term memory.

Thus, it can prevent learning unintended and unfactual multimodal causality and encourage positive

transfer across different data sources.

5.2 Self-improving Single-life/Autonomous

Reinforcement Learning

Beyond solving static tasks like classification, for deploying sustainable AI, I aim to build continuously

improving autonomous Reinforcement Learning (RL) agents on a real-world platform throughout a single

life. Given environments, multiple irreversible states can occur (e.g., objects falling under the table,

weather changes, robot arms breaking, unexpected obstacles like birds or bugs entering the state, etc.),

requesting different proactive interventions from humans, or other external supports.

While earlier work [138, 139, 166] focuses on avoiding an irreversible state during autonomous RL,

I believe the agent needs to estimate multiple irreversible states, where they occasionally occur during

training, and occurrence probability can vary over single-life RL [21] (i.e., continuous distributional shift),

similar to the temporally changing input distribution in continual learning. Further, some irreversible

states are much more frequently occurring than others (imbalanced occurrence of irreversible states).

I aim to build an RL agent that incrementally learns to avoid multiple irreversible states sequentially

as the environment changes (ideally throughout a single life) without forgetting previously learned skills.

Thus, the agent can request proactive human intervention appropriately, or resolves the problem with

simple remedies w/o resetting the environment through human intervention (if a bug/bird comes and

hinders the operation of the reinforcement agent, the machine can scare them away with sounds or winds).

To prevent skill forgetting and deploy a continuously self-improving agent for autonomous/single-life

RL, I aim to explore adopting long-term episodic memory and conditional generative replay/imitation

learning. The agent stores latent states/representations of irreversible events in the long-term episodic

memory and repeats learned skills (and types of irreversible states) via generative replay conditioned to

the current environment (since the environment might be changed during single-life RL without resetting).

To this end, the RL agent incrementally acquires/adapts new skills throughout their single-lifespan while

minimizing human intervention.
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